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Abstract—The probability density function (pdf) of a modulo
2 phase response slope of an intrinsic anharmonic sensor of a
crystal oscillator is studied in detail. It is noted that without an
external drive, the sensor is excited by the oscillator noise floor
with a signal-to-noise ratio (SNR) of around unity. The slope pdf
is provided both in the rigorous integral form and in the -distri-
bution-based approximation. It is shown that the slope mean value
is estimated to be zero with SNR= 0. It then gradually tends to-
ward actual value as SNR rises so that with SNR 2 the bias
of slope estimates is almost negligible. With0 SNR 0 7, the
slope variance stays at a maximum and then asymptotically dimin-
ishes toward zero as the SNR rises. The importance of these studies
resides in a shown fact that, practically, having SNR 2 in anhar-
monic sensors may result in substantial bias and variance for phase
response slope mod2 estimates.

Index Terms—Piezoelectric sensor, stochastic analysis.

I. INTRODUCTION

QUARTZ crystal sensors have been a subject for peer ex-
amination in precision electronics for several decades [1].
Owing to great sensitivity, precision, and accuracy, such

sensors have gained currency in precise measurements of tem-
perature, pressure, humidity, acceleration, etc. Among all appli-
cations, there is a relatively young and not yet well studied field.
Here, intrinsic anharmonic resonances of a crystal resonator are
considered to be sensors of environment for an oscillator oper-
ating at the fundamental mode of the same resonator [2]. Such
an idea has been widely employed since the 1970s and, con-
sequently, a lot of solutions were patented. The authors have
been concerned primarily with simultaneous excitation of the
fundamental and anharmonic mode within the dual-mode [3] or
multi-mode oscillator loop. Basically, such a loop works stably
with close drive levels in each vibration. It then turned out that
this operation principle imposes an important limitation to the
approach: having a close drive level, a sensor interacts with the
fundamental mode via the resonator thermal field [4] affecting
oscillator accuracy. An alternative approach is known as the
modulational method [5]. It assumes that a sensor initially oper-
ates being excited only by the oscillator noise floor1. To increase
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1It is tacitly assumed that the resonator fundamental vibrations are excited
with normal drive levels and, thus, the physical courses of the specific crystal
resonator phenomenon associated with small SNR (low drive levels) [16]–[20]
are removed for the anharmonic sensors by the intensively vibrating piezoelec-
tric plate.

the signal-to-noise ratio (SNR), a modulating signal is induced
in the oscillator loop, having a frequency such as that between
the fundamental and sensor modes. The drive level for a sensor
is then obtained to be near optimal in a sense of small tracking
error and negligible interaction with the fundamental mode. The
approach was practically implemented in the quartz crystal stan-
dards for adjusting oven temperature via the “B”-mode of the
SC-cut resonator [6] and to compensate the fundamental mode
aging rate via the anharmonic mode of the AT-cut resonator [7].

In this paper, we address a stochastic investigation of the an-
harmonic sensor excited by the oscillator noise floor, assuming
a noise to be Gaussian. We primarily focus attention on the prob-
abilistic analysis of the sensor phase response slope, as this per-
formance is responsible for the sensor resolution and precision.
The paper is organized as follows. In Section II, we consider the
signal models, specify the slope of a sensor phase response, and
formulate the problem. The slope pdf in presence of Gaussian
noise is derived in Section III, in which we give two relevant
integral relations. Limiting cases of SNR are also considered
here. A useful approximation based on the Tikhonov distribu-
tion ( -distribution) can be found in Section IV, along with the
asymptotic pdf, providing calculations with a reasonable accu-
racy via the modified Bessel functions of the first kind zero
order. Finally, conclusions are drawn in Section V. Hereby, we
answer the major question: which SNR should be enough being
provided by modulation to achieve a negligible bias and small
noise in the estimate of the modulo sensor phase response
slope?

II. SIGNAL MODEL AND PROBLEM FORMULATION

An anharmonic sensor responds both in the oscillator ampli-
tude and phase. It is, however, much easier in practice to detect
and track the sensor via the amplitude [5]. Then, consider an
oscillator amplitude spectrum envelope (Fig. 1) and note that
with the noise floor drive level, the sensor produces a nonuni-
formity around the Fourier frequency , where
and is a sensor resonance frequency and an oscillator fre-
quency, respectively. Fig. 1 shows, as well, the relevant sensor
phase response, which is readily measured as the phase angle
between the modulating signal [5] and the envelope of an oscil-
lator signal [2].

A sensor response in the oscillator output may be described
at an arbitrary frequency around as a
deterministic harmonic signal

(1)
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Fig. 1. Anharmonic sensor response in the oscillator spectrum.

Fig. 2. Phase response of the anharmonic sensor at two different time instants.

where and are, respectively, values of the am-
plitude and phase responses at, and is an initial constant
phase. Considering the oscillator noise floor to be Gaussian with
known variance , one may model the noise at as a narrowband
Gaussian process

(2)

where is a random amplitude distributed with the
Rayleigh law and is uniformly distributed
the modulo random phase [8]. Since, practically, a noise (2)
perturbs a signal (1) linearly, we write an oscillator output in the
form of a narrowband random signal

(3)

in which is the positive valued envelope,
and is the modulo total phase, .

To estimate the slope of a phase response in presence of
Gaussian noise, we would like the sensor to be examined at two
different time instants. Subsequently, we assume that a sensor
responds to the measured parameter (temperature, for example)
at the resonance frequency and at time and , re-
spectively, having random phasesand at the intermediate
frequency (Fig. 2). This, in turn, allows us to specify the slope
by

(4)

where , is a difference phase
mod and and are supposed to be statistically indepen-

dent processes mod being taken at different times2 . Either
phase or mod inherently lies between to . Con-
sequently, their difference ranges from to [9]. In
the measurement set, each phase angle is measured separately
and, thus, the actual distribution of may be calculated. In
the phase (sensor) tracking system, however,is estimated
to lie from to [8], except for in special cases. We will then
be interested throughout the paper only by the mod.

III. PDF OF THE PHASE RESPONSESLOPE PERTURBED

BY GAUSSIAN NOISE

Let us now derive the pdf of the slope (4) and estimate its
major statistics, mean, and variance. A slope is normally calcu-
lated for the finite frequency span taken to the left and
to the right of the resonance frequency in the linear range of the
phase response. This means that without a loss of generality, one
may consider and, thus, (4) degenerates to the
reduced slope

(5)

Furthermore, since each frequency and is equidistant to
(Fig. 2) and shape of may be assumed to be symmetric

(Fig. 1), we may consider a SNR3 to be iden-
tical in either phase, this is

.
Relation (5) claims that, as is constant, distributions of

and are shape equal, and the task then requires a
probabilistic analysis of the phase shift between two harmonic
signals of the same frequency perturbed by Gaussian noise.
Such a problem coincides with those in analog communi-
cations (problems in angle modulation and demodulation),
digital communications (bit error probability [9]), pulse radars,
phase-locked loops (PLL) [8], and some other areas. In the
overview work [9], Pawulaet al have provided an extensive
examination of the possible solutions for arbitrary parameters
of signals (1) and (2). An analysis was done starting from the
rigorous integral pdf of derived by Fleck and Trabka in
1961 [10] and the fundamental Bennett pdf of phase [11]. Some
new useful results were then published by Pawula in [12].

In our particular case of and taken at different times,
we should assume them to be independent, and then their joint
pdf to be a multiplication of one-dimensional pdf

(6)

Equation (6) turns us back to the early Bennett work [11], in
which he has shown that the phase pdf is subject to the analytic
law, having the form, for example, of [8]

(7)

in which is a probability integral (A1.1).
Taking (7) into account, in order to determine pdf of, let

us transfer from the system of functions and to that of

2This holds true for the assumed short correlation time Gauss noise.
3Throughout the paper, we use this definition of SNR [8] whereas in commu-

nications [9] it is specified for the signal and noise power to bea .
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and . From (5), we get , and then
the determinant of the Jacobian of the transformations becomes

, transferring

(6) to

(8)

Now, we use (5), designate and , and derive
the required one-dimensional (1-D) pdf of the reduced slope by
integrating (8) over from to

(9)

Involving (5) then leads to the formula given in [9, (6)] for ,
that is

(10)

in which pdf and is readily derived from (7) to be

(11)

(12)

where and the auxiliary probability functions
are

(13)

(14)

Substituting (11) and (12) into (10) yields

(15a)

and we may note for a fact that the integral in (15a) cannot be
solved in simple functions because of the integrand combined
with the shifted probability integrals multiplied by the exponen-
tial and harmonic functions. It may only be reduced to a slightly
simpler integrand such as that shown, for example, by Fleck and
Trabka in [10]4

(15b)

Based upon this fact, we give below an analysis of two limiting
cases.

4The first rigorous integral pdf was derived by Tsvetnov [20] and others are
given in [9], [12], and [13].

A. Asymptotics

Assuming great noise (small SNR), , the integral in
(15a) tends toward zero and pdf becomes uniform

(16)

Otherwise, with small noise (large SNR), , the first
term in brackets of (15a) tends toward zero whereas the re-
mainder for and transforms to

(17)

With great SNR, the process may be assumed to be noiseless.
Instantly, both probability integrals in (17) become unity. Yet,
by and , a multiplication of
the cosine functions tends toward unity, as well. Now use the
decompositions and

, and rewrite (17) as

(18)

Integral (A1.2) then brings (18) to the form of

(19)

in which is a probability function (A1.3). It may easily
be shown now that , once with
the variables of the first and the second erf-functions become

and , respectively. Accordingly, (18) converges to

(20)

that is nothing less then the normal density

with an expectation
and variance

(21)

It is to be remarked now that a simplified form of (15a)
and its asymptotic forms were given by Pawula in [13, (A10),
(A11a–c)], in which a large SNR tends (A11a) to (20). We then
conclude that as SNR rises, the pdf (15a) normalizes, and its
variance decreases.
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IV. -DISTRIBUTION-BASED APPROXIMATION

So far, we dealt with the rigorous pdf, in which either asymp-
totic (16) or (20) is reasonably accurate in the range
and , respectively. Herewith, the gap cal-
culates accurately only by (15a) or by equal integral relations
that was mentioned more than once in literature ([9], [10], [12],
[13], and [20]). To achieve at least an engineering approxima-
tion, let us recall that the-distribution by Tikhonov [14] serves
for the same problem in PLL phase stochastic theory, that is

(22)

where is the modified Bessel function of the first kind
zero order and is a parameter dependent on SNR. Approxi-
mating each of the terms in the integrand of (10) by (22) yields

(23)

where ; , , and
are coefficients of the approximating polynomial

[14]. Now introduce and
, and first go to the function

(24)

Then substitute , where
and , bring integral in (24) to the

Bessel function (A1.4), and finally derive a pdf

(25)

in which . On the first glance, this
form (25) is superior to that of (15a) or other similar integral
relations from the engineering point of view. The only question
remains the approximation error. Below, we provide the relevant
analysis, starting with the same asymptotic cases as for (15a).

A. Asymptotics of the -based Approximation

In the first limiting case, , we get ,
, and . Thus, (25) reaches the same uniform pdf

(16). In the second case, , first use an approximation
(A1.5) and then suppose and

. Instantly, (25)
transforms to the normal law (20) with the same variance (21).
Hence, as well as in the rigorous case (15a), pdf (25) demon-
strates the same asymptotics and, so, it is also accurate in the
aforementioned SNR ranges and

To illustrate errors in the gap of , Fig. 3 shows
an assemblage of (15a) and (25) for several SNR with

, for example. It turns out that the error related to the pdf
value with appears to be of about 8% in a gap of

Fig. 3. Pdf of the sensor phase response reduced slope for several SNR: (15a)
dark and (25) light .

(a)

(b)

Fig. 4. General statistics. (a) Mean slope�z(a ). (b) Standard deviation of the
phase and reduced slope,� and� (a ), respectively.

SNR , 6 for SNR , 3 for SNR ,
and 2 for SNR.
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B. Mean and Variance

Let us now estimate the slope mean and variance. Working
out with , we come, however, to the infinite
series

(26)

and note that variance cannot be expressed in a simple form as
well. Numerical calculus in Fig. 4 illustrates the mean and vari-
ance in the range of a small SNR, . It turns out that the
mean slope changes slowly when noise is great and
practically reaches with . A simple empirical approx-
imation is available here: .
Contrary to the phase standard deviation given in [8,
(7)], the reduced slope standard deviation remains al-
most constant with large noise, , then decreases
rapidly up to as SNR rises, and finally tends toward
zero asymptotically and very slowly when . On the
whole, the slope exhibits larger variance as compared to that of
the phase itself, excluding the isolated case of , in
which the standard deviation in either slope reaches .

V. CONCLUSION

In this paper, we have statistically examined the pdf of the
phase response slope of an anharmonic sensor operating in
the precision crystal oscillator with SNR of around unity. The
rigorous integral pdf was derived and we have shown that the

-distribution may serve as an engineering approximation
being performed only by the modified Bessel functions of the
first kind zero order. It must be emphasized that having small
SNR in the anharmonic crystal sensor, , may result
in substantial bias and variance for the estimates of the phase
response slope owing to its -periodicity. Yet, both estimates
appear to be larger than those for the phase response itself.
These notations are applicable as well for the conditions of the
sensor passive and active tracking. In either case, extremely
small SNR leads to almost full insensitivity of the phase mod

tracking system5 [15] and [8], and only with SNR does
its tracking performance improve substantially.

APPENDIX

MATHEMATICAL FORMULAS

(A1.1)

(A1.2)

5This phenomenon was first mentioned by Tikhonov in [14] for PLL.

(A1.3)

(A1.4)

(A1.5)
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