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Abstract: A simple and compact fiber optic sensor based on a two-core fiber is 
demonstrated for high-performance measurements of refractive indices (RI) of liquids. In 
order to demonstrate the suitability of the proposed sensor to perform high-sensitivity 
sensing in a variety of applications, the sensor has been used to measure the RI of binary 
liquid mixtures. Such measurements can accurately determine the salinity of salt water 
solutions, and detect the water content of adulterated alcoholic beverages. The largest 
sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per 
Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, 
our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately 
for the same RI range. 
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1. Introduction 

Refractive index (RI) sensors are suitable for applications related to quality control and industrial 
processing, mainly in the food industry and environmental contamination monitoring, due to their 
compact and simple architecture [1]. Regarding the scientific aspects, RI sensors find a wide range of 
applications in chemical and biological analysis, biomedical applications, and specimen detection [2]. 
Due to this duality of scientific and technological applications in which RI sensors have been 
demonstrated to achieve high-performance measurements, RI sensing stands as one of the most 
important techniques in the development of highly sensitive sensors. 

A growing interest in fiber optic sensors for RI sensing has arisen due to their well-known 
characteristics such as compactness, high sensitivity, in situ measurements, and immunity to external 
electromagnetic interference. A large variety of fiber-based RI sensors can be found in the literature, 
the most widely studied being those based on fiber interferometry, fiber gratings, and specialty fibers. 
For example, RI sensors based on photonic crystal fibers (PCF) have been demonstrated to allow 
efficient architectures in both transmission and reflection configurations with a linear response in a 
relatively wide range of operation. Nevertheless, these sensors have relatively low sensitivities, on the 
order of 190.9 nm per Refractive Index Units (RIU) and 6.67 nm/RIU for transmission and reflection 
configurations, respectively [1,3]. Regarding RI sensors based on fiber gratings, several techniques to 
improve the sensitivity have been reported. A tilted Long Period Fiber Grating (tilted-LPFG) 
exhibiting highly linear response with a slope equal to 340 nm/RIU, has been reported in which the 
sensitivity was enhanced by improving the coupling between the core and cladding modes [4]. As for 
grating techniques applied to PCF, a LPFG inscribed on a PCF with a high-sensitivity of 2000 nm/RIU in 
RI measurements was recently demonstrated [5]. Alternative techniques such as those based on 
polymeric coatings have also been demonstrated to enhance the sensitivity of LPFG sensors, however 
these types of sensor exhibit non-linear responses, and specialized imaging equipment is required to 
verify the fabrication process [6,7]. 

Finally, regarding sensors based on fiber interferometry, some efficient alternatives have been 
demonstrated for RI sensing using Michelson and Mach-Zehnder interferometers. The most widely 
studied fabrication techniques are based on abrupt tapering and micro-machining. Although the fabrication 
process for abrupt tapers is simple, the overall result is a sensitivity lower than 30 nm/RIU [8–10]. On the 
other hand, interferometric RI sensors based on micro-machined cavities have been demonstrated to be 
the most sensitive for RI sensing, achieving sensitivities higher than 9,300 nm/RIU [11,12]. In similar 
fashion to the grating-based techniques, despite the very high sensitivity that can be achieved by this 
type of sensor, special equipment, such as femtosecond lasers, is required for machining the cavities. 
More recently, an alternative version of a RI sensor based on a twin-core fiber for RI measurements 
has been demonstrated using a simple setup and yielding a sensitivity of 826.8 nm/RIU [2]. However, 
the respectable sensitivity can only be achieved at the expense of requiring multiple bends in different 
sections of the fiber. 

Recently, a fiber optic RI sensor based on the coupling between a partially filled hollow channel 
and a solid core has been proposed [13]. The sensor is demonstrated to be competitive since it has a 
simple architecture and it exhibits high sensitivity, 3250 nm/RIU, for RI measurement in the range 
from 1.5 to 1.66. The proposed sensor requires a relatively long section of fiber and large times in 
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order to allow an interaction length sufficient to induce meaningful changes in the spectral response 
(10 min to fill ~1 cm). However, the main drawbacks of the sensor are the need for a guided mode in 
the liquid core and the fact that the lowest measurable RI is ~1.45, which makes this sensor not 
suitable for applications where aqueous solutions are to be measured. 

In this work a simple, compact, and cost-effective fiber optic RI sensor based on a Two-Core  
Fiber (TCF) is demonstrated. The high performance characteristics of the proposed RI sensor are put to 
the test in the measurements of the salinity of salt water mixtures and of the water content in 
adulterated alcoholic beverages. The largest sensitivity experimentally demonstrated in our laboratory 
is 3119 nm/RIU for the RI range from 1.3160 to 1.3943. 

2. Principle of Operation 

Figure 1a shows a picture of the TCF that has been used as the sensing element. The diameter of the 
cladding is the standard 125 µm and the two cores, both having diameter equals to 8.6 µm, are 
asymmetrically located: one of the cores is located at the center of the fiber while the other is located 
15 µm away from the central core (center-to-center separation distance). The RI of the cladding and 
the cores are 1.443 and 1.448, respectively, which leads to a numerical aperture of N.A. ≈ 0.12. The 
TCF was manufactured at ACREO Fiberlab (Kista, Sweden), and it was designed for two main 
purposes: first, to allow direct splicing to standard single-mode fibers (SMF) without the need of 
special procedures and, second, to induce overlap between the modes of the cores thus leading the 
fiber to respond as a directional coupler. 

Figure 1. (a) Cross section of the TCF; (b) Spectral response of the TCF. 

 

The analytical spectral response of the TCF in the spectral window from 1465 nm to 1665 nm is 
shown in Figure 1b. Since the TCF is to be spliced between two SMFs, only the central core needs to 
be excited at the beginning of the TCF section. Therefore, the central core is treated as the transmitting 
core since the TCF response will be collected by the output SMF, while the off-center core is 
considered the coupling waveguide. In order for the TCF to be sensitive to the surrounding media, it is 
proposed that the cladding of the TCF be controllably removed by means of wet chemical etching so 
that the TCF is capable of interacting with the external environment. Figure 2a shows a rendering of 
the proposed scheme. To further understand the interaction between the etched fiber and the 
surrounding environment, numerical simulations in COMSOL Multiphysics® were performed for a 
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structure with the following characteristics: the core diameter is kept fixed at 8.6 µm while the 
cladding diameter D of the TCF is reduced from 125 µm to 41 µm, 42 µm, and 43 µm (i.e., fiber radius r 
is reduced from 62.5 µm to 20.5 µm, 21.0 µm, and 21.5 µm). The RI of the cores and the cladding of 
the TCF remain unaltered (i.e., 1.448 and 1.443, respectively); additionally, the etched TCF is 
surrounded by an external medium with specific refractive index next. 

Figure 2. (a) Schematic of the TCF after the etching process; (b) ERI of the central and 
external core for TCF diameter of 41 µm, 42 µm, and 43 µm. 

 

Preliminary numerical simulations were focused on sketching the individual interaction between 
each core and the surrounding media. The effective refractive index (ERI) was calculated for both 
cases, when only the central core is considered and then when considering only the off-axis core, for 
external media with RI ranging from that of water (1.316) to that of the TCF cladding (1.443). Figure 2b 
shows the ERI of each core for a TCF diameter of 41 µm, 42 µm, and 43 µm respectively. It can be 
observed that when only the central core is considered, a constant ERI is obtained regardless of the 
external surrounding media, which suggests that the central core does not interact with the external 
environment. On the other hand, unlike the central core, the off-axis core strongly interacts with the 
surrounding media: the ERI directly depends on the RI of the surrounding media and it changes more 
rapidly as the diameter of the TCF is reduced. As expected from the structure itself, the ERI of both 
structures tends to the same value as the RI of the external media approaches the RI of the cladding of 
the TCF. Since the coupling coefficient is directly related to the optical properties of the coupled cores, 
any changes in the coupling between the cores are induced by variations in the ERI of the off-axis core 
due to the interaction with the external surrounding media. 

The response of the TCF can then be evaluated by exploring the dependence of the coupling 
between the cores as a function of the RI of the surrounding media. An indirect measurement of this 
dependency is the variation on the ERI of the coupled modes, which can be obtained directly from the 
numerical simulations performed in COMSOL Multiphysics®. The ERI of the even and odd coupled 
modes obtained from the numerical simulations for an operation wavelength of 1550 nm for TCF 
diameter of 41 µm, 42 µm, and 43 µm are shown in Figure 3a. The dashed lines indicate the limit for 
which the refractive index of the surrounding media reaches the refractive index of the cladding of  
the TCF. 
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Figure 3. (a) ERI of the even and odd coupled modes; (b) Coupling coefficient as a function 
of the refractive index of the surrounding media for TCF diameter of 41, 42, and 43 µm. 

 

Once the ERI of the even and odd coupled modes are determined using numerical simulation, it is 
then possible to compute the corresponding coupling coefficient since it can be expressed in terms of 
the propagation constants of the even and odd coupled modes which, in turn, are determined by the 
ERI at a particular wavelength [14]: 
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Figure 3b shows the coupling coefficient for the same operating wavelength (i.e., 1,550 nm) as a 
function of the RI of the surrounding media for TCF diameter of 41, 42, and 43 µm. The coupling 
coefficient was calculated directly from the data shown in Figure 3a and using Equation (1). It can be 
noted that, for this particular conditions, the coupling coefficient between the cores decreases as the RI 
of the surrounding media approaches the RI of the cladding of the TCF. The dashed line indicates the 
limit for which the refractive index of the surrounding media approaches the refractive index of the 
cladding of the TCF. 

Based on the results obtained from the numerical simulations, the spectral response of the TCF as a 
function of the RI of the surrounding media can be obtained. A very simple approach consists in 
evaluating Equation (2), which is the analytical expression of the electric field for a directional 
coupler, for all the wavelengths within the spectral window of interest. The directional coupler is 
assumed to have fixed length z = L, the coupling coefficient is to be recalculated for each wavelength 
and the difference between the propagation constants of the individual cores is taken into account 
through the δ parameter [15]: 
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According to the results obtained from the numerical simulations, the spectral response of the 
etched TCF is expected to experience a red spectral shift as the RI of the external surrounding media is 
increased, as shown in Figure 4. Additionally, the contrast of the spectral response is expected to 
improve as the RI of the surrounding media increases. The latest is related to the fact that a more 
symmetric structure takes place as the RI of the external media approaches the RI of the fiber cladding. 
This effectively reduces the parameter δ in Equation (2) all the way to zero at the upper RI limit 
dictated by the TCF cladding. 
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Figure 4. Analytical spectral response of the TCF for different surrounding media. 

 

Therefore, based on the results from the numerical simulations, the etched TCF structure is ideal for 
the realization of a RI sensor by following the spectral shifts produced by the RI of the external 
medium. Another advantage of the sensor is that the sensitivity can be controlled by tuning the 
thickness of the TCF cladding on the off-axis core. 

3. Experimental Section 

A schematic of the experimental setup for RI measurement is shown in Figure 5. The setup consists of a 
super luminescent diode (SLD) centered at 1,580 nm, a 50 mm long section of TCF (i.e., interaction 
length) spliced between two SMFs, and an optical spectrum analyzer (OSA). From the numerical 
simulations previously described it was found that only the off-axis core interacts with the external 
environment. Therefore, instead of removing the cladding of the entire TCF we choose to remove only 
the cladding around this core. From a practical point of view, removing material only from a section of 
the TCF will help to give the fiber good mechanical support after etching. The TCF was aligned such 
that the external core is facing up and then it was fixed using regular epoxy allowing the bottom of the 
fiber to be protected by the epoxy itself and the top of the fiber to be exposed to the etching solution. 
The rest of the fiber was covered with epoxy to protect it during etching and then the cladding of the 
TCF was slowly removed using buffered oxide etchant (BOE). 

Figure 5. Schematic of the experimental setup for RI measurement. 

  

Fixing the TCF in the way just described also allows neglecting bending and surface tension effects 
since the fiber remains in the same position at all times thus leading to the sensor spectral response to 
depend only on the RI of the external environment. 
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3.1. Refractive Index of Binary Mixtures 

Firstly, the sensor was tested in the RI range from 1.3160 to 1.3943, which extreme values 
correspond to the RI of water and ethylene glycol, respectively, at 20 °C. Intermediate values 
correspond to the RI of binary liquid mixtures between water and ethylene glycol with volume 
fractions of 0.75/0.25, 0.50/0.50, and 0.25/0.75, respectively. The RI of the mixtures was estimated by 
averaging several models for the quantitative determination of the RI of binary liquid mixtures [16]. 
Figure 6a,b shows the sensor spectral response after etching the TCF during 267 min and 280 min, 
respectively. As expected, the spectral response red shifts and the contrast is enhanced as the RI of the 
external environment increases. The wavelength shift is larger as more material from the cladding is 
removed around the off-axis core since a stronger interaction between the outer core and the 
surrounding liquid is achieved. 

Figure 6. Spectral response of the RI sensor for etching times (a) 267 min; (b) 280 min. 

 

In order to evaluate the sensor performance after removing different amounts of material, the same 
set of liquids was tested for etching times ranging from 262 min to 302 min. For this range of etching 
times, the thickness of the cladding around the off-axis core approximately ranges from 9.14 µm to 
3.94 µm, assuming an etching rate of 130 nm/min [17]. Figure 7a shows the absolute wavelength shift 
produced by the tested liquids for several etching times within the range from 262 min to 284 min. 
Despite the sensor was tested for etching times up to 302 min, the wavelength shift induced for the 
largest etching times was out of the spectral window where the measurement was performed so not all 
the liquids in the set could be measured. 

The nonlinear behavior of the sensor response expected from the numerical simulations, which can 
be expected because the coupling coefficient does not change linearly with the external RI, was 
confirmed by the experimental results, as can be noticed from Figure 7a. However, in order to provide 
a measurement of the sensor performance, an approximate sensitivity was estimated by taking the ratio 
between the total wavelength shift and the total RI change [18]. Figure 7b shows the estimated 
sensitivity of the RI sensor as a function of the thickness of the cladding around the off-axis core, 
which is directly related to the etching times in the range from 262 min to 302 min. 
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Figure 7. (a) Absolute wavelength shift of the sensor response for external media ranging 
from water to ethylene glycol; (b) Sensitivity of the RI sensor as a function of the thickness 
of the cladding around the off-axis core. 

 

At first, when the cladding has been thinned down enough to allow the off-axis core to interact with 
the external liquid, the sensor exhibits low sensitivity since a weak interaction takes place. The thinner 
the cladding the stronger the interaction and thus larger changes are induced to the ERI of the off-axis 
core. Despite the sensitivity dramatically increases, it finds its limit when the cladding has been 
completely removed. The numerical fitting of the sensor sensitivity as a function of the cladding 
thickness allows sketching the limit sensitivity to be approximately 3,485.67 nm/RIU for the RI of the 
external environment ranging from 1.3160 (water) to 1.3943 (ethylene glycol). The experimental 
results allow observing a sensitivity of 3,119 nm/RIU, which is quite close to the theoretical limit 
obtained from the numerical fitting of the experimental results. 

3.2. Salinity 

A different application of the developed sensor is related to the measurement of salinity in aqueous 
solutions [19,20]. Since it is well know that the RI of water changes with the salinity concentration, the 
sensor was tested for salinity measurement by preparing several sodium chloride (NaCl) aqueous 
solutions. The aqueous solutions were classified into two sets based on the solution concentration: 
high-concentration, from 0 M to 5 M, and low-concentration, from 0 M to 1 M. The RI of the 
solutions was calculated to vary from 1.3160 to 1.3603 and from 1.3160 to 1.3262 for the high- and 
low-concentration range, respectively, due to the linear dependency on the NaCl concentration at 
room temperature (20 °C) [11]. 

3.2.1. High-Concentration Range 

The spectral response of the sensor was experimentally measured in the concentration range from  
0 M to 5 M for etching times ranging from 289 min to 302 min, which leads to the cladding around the 
off-axis core to have approximate thickness between 5.63 μm and 3.94 μm approximately. In similar 
fashion to the previous case, the spectral response red shifts as the refractive index of the external 
environment increases, in other words, the sensor spectral response shifts depending on the NaCl 
concentration of the aqueous solution and the spectral shift can be directly correlated to the  
solution concentration. 
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Figure 8a shows the wavelength shift induced on the spectral response as a function of the NaCl 
concentration for several etching times. It can be clearly noticed that the larger etching times lead to 
stronger interactions and then longer spectral shifts are induced for the same set of solutions. In this 
particular case, a highly linear response is obtained for the studied cases resulting in a sensitivity 
ranging from 7.1071 nm/(mol/L) to 16.7914 nm/(mol/L) for etching times ranging from 289 min to 
302 min. The largest wavelength shift, which was naturally obtained for the largest etching time (302 min), 
was measured to be 83.25 nm, as can be confirmed from Figure 8a. On the other hand, Figure 8b 
shows that the sensor sensitivity also shows a highly linear dependency on the thickness of the 
cladding around the off-axis core for the particular case of the high-concentration regime and for the 
tested etching times. 

Figure 8. Salinity, high-concentration regime: (a) Absolute wavelength shift of the sensor 
response; (b) Sensitivity of the TCF sensor as a function of the remaining cladding. 

 

3.2.2. Low-Concentration Range 

After evaluating the performance of the sensor in the high-concentration range, the sensor spectral 
response was then tested for low-concentrated saline solutions. In this regime the concentration ranges 
from 0 M to 1.069 M and the sensor response was evaluated for etching times ranging from 293 min to 
302 min. It can be noticed that although the spectral red shift is reduced it can still be resolved by the 
sensor. As shown in Figure 9a, the highly linear response is maintained and a sensitivity ranging from 
5.5691 nm/(mol/L) to 14.0917 nm/(mol/L) for etching times ranging from 293 min to 302 min is 
achieved, respectively. Figure 9b shows that for this particular case in which low-concentration NaCl 
aqueous solutions were measured, the sensor sensitivity also shows a highly linear response. 

Compared to the high-concentration regime, the spectral response of the sensor is expected to shift 
less since the low-concentration range leads to smaller RI variations. However, from the experimental 
results it can be noticed that the sensor response for each saline solution in the low-concentration range 
can be still clearly identified. The largest wavelength shift, which was obtained for the largest etching 
time (302 min), was measured to be 15 nm, as can be confirmed from Figure 9a. 

The capability of the TCF sensor to perform salinity measurements with high sensitivity over a 
wide range of concentrations is demonstrated by evaluating the sensor response in both the high- and 
low-concentration regimes. The highest sensitivity of 16.7914 nm/(mol/L) within the measured salinity 
concentrations is more than 20 times larger than that recently reported for polymide-coated photonic 
crystal fibers and polymide-coated fiber Bragg gratings [21]. 
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Figure 9. Salinity, low-concentration regime: (a) Absolute wavelength shift of the sensor 
response; (b) Sensitivity of the TCF sensor as a function of the remaining cladding. 

 

3.3. Adulterated Alcoholic Beverages 

Adulteration of alcoholic beverages is a great concern either due to quality control of the origin or 
the potential harm to humans when diluted with unknown substances (mainly ethyl alcohol). Since 
addition of water or alcohol changes the RI of the alcoholic beverage, our sensor can be potentially 
used in such measurements. In this case, the sensor was tested for the authentication of alcoholic 
beverages by using several tequila solutions. The tequila used in the experimental measurements was 
Jose Cuervo Tradicional™, which we verified to be a certified tequila, and all the solutions were 
diluted only with water and the set of solutions ranges from pure tequila to a 50/50 volume percent 
diluted solution. Based on the RI of water within the spectral window of interest and the RI reported 
for tequila, the RI of the tested solutions is estimated to range from 1.3338 to 1.3518 [22]. 

The spectral response of the sensor was experimentally measured for etching times ranging from 
293 min to 302 min, which leads to the cladding around the off-axis core to have approximate 
thickness between 5.1 μm and 3.9 μm. As expected from the previous results, both the spectral 
response red shifts and the contrast enhances as the refractive index of the external environment 
increases. In this particular case, since pure tequila is the reference liquid and diluted solutions are 
measured, the results can also be interpreted from the point of view that the sensor spectral response 
blue shifts as tequila is more diluted. 

Figure 10a shows the absolute wavelength shift produced by the tested diluted solutions for several 
etching times within the range from 289 min to 302 min as a function of the dilution. A highly linear 
response is obtained indicating a sensitivity ranging from −0.19214 nm/% to −0.42871 nm/% for 
etching times ranging from 289 min to 302 min. The largest wavelength shift, which was obtained for 
the largest etching time (302 min), was −20.5 nm, as can be confirmed from Figure 10a. The sensor 
sensitivity as a function of the thickness of the cladding around the off-axis core is also shown in 
Figure 10b. In this particular case, since the reference spectral signal (pure tequila) blue shifts as the 
tequila concentration decreases, a more negative sensitivity is obtained as the cladding becomes 
thinner. These results basically confirm the behavior exhibited in the previous cases from the point of 
view that a larger spectral shift is achieved for larger etching times but, unlike the previous cases, the 
negative sign makes reference to the spectral shift towards smaller wavelengths. 
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Figure 10. Diluted solutions of tequila: (a) Absolute wavelength shift of the sensor response; 
(b) Sensitivity of the TCF sensor. 

 

We should mention that the sensor is capable of measuring higher RI up to a value of 1.445. In fact, 
as shown in Figure 3b, as the RI of the liquid approaches the RI of the cladding the coupling 
coefficient changes quite rapidly and hence the sensitivity should also increase significantly. In the 
case of RI values higher than 1.445, even when the sensitivity is enhanced, the losses will be also 
significant and the contrast of the spectral response is dramatically reduced making very difficult to 
follow the shift of either a peak or valley. 

Temperature compensation is an issue that needs to be considered just as with any other fiber based 
sensor. When dealing with RI sensor this is a critical issue since all the sets of liquids used in this work, 
the binary liquid mixtures between water and ethylene glycol, the saline solutions for both high- and 
low-concentration regime, and the diluted solutions of tequila, are dependent on temperature this effect 
needs to be taken into account in order to correct the spectral shift of the TCF response. In order to 
estimate the temperature dependence of the TCF, temperature was measured in the range from 23 °C 
to 100 °C, resulting in a total spectral red shift of approximately 3.3 nm, which is to be expected due to 
the positive thermo-optic coefficient of fused silica. The linear fit of the experimental measurements 
suggest a temperature sensitivity of 42.88 ± 1.18 pm/°C, which is good agreement with the sensitivity 
reported for a high-temperature sensor based on this same TCF [23]. Based on the fact that most of the 
experimental measurements performed result in spectral shifts on the order of several nm, which is 
approximately three orders of magnitude larger than that obtained due to temperature, temperature 
effects can be neglected in such cases. In the case of smaller spectral shifts, and given the linearity of 
the temperature dependence of the sensor, thermal effects can be easily eliminated by knowing  
the temperature. 

4. Conclusions 

In summary, a novel and simple fiber optic sensor for high sensitivity RI measurements based on a 
TCF was demonstrated. The TCF is forced to interact with the external environment by controllably 
removing the cladding around the off-axis core of the TCF. This allows not only inducing the 
interaction between the TCF and the surrounding media but also adjusting the sensitivity of the  
TCF-based RI sensor by only controlling the duration of the etching process. The proposed 
experimental setup allows neglecting bending and surface tension effects which makes the sensor 
suitable for operating at different RI ranges and for a wide variety of liquids. In this regard, the high 
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performance of the proposed RI sensor was demonstrated and two potential applications, namely the 
measurement of salinity in both high- and low-concentration regimes, and the detection of adulterated 
alcoholic beverages were investigated. 

The sensor spectral response was measured using the sets of liquids after several etching times and, 
in order to disclose how the sensor sensitivity changes within the RI range of interest, the sensitivity 
was characterized by measuring the absolute spectral shift induced by the surrounding liquids. The 
largest sensitivity experimentally demonstrated was 3,119 nm/RIU for the RI range from 1.3160 to 
1.3943. However, from the numerical fitting of the experimental results, it was found that the 
sensitivity can be enhanced up to an approximate value of 3485.67 nm/RIU for the same refractive 
index range. Compared to RI sensors based on non-interferometric techniques, FBG and LPFG, and 
the use of PCF, the proposed sensor exhibits a higher sensitivity which is around 1.5 times larger [5–7]. 
The sensor has been demonstrated to be simple, robust, and having an adjustable sensitivity, which 
makes the sensor suitable to operate over a wide RI range and still perform RI measurements with high 
sensitivity without requiring any special equipment to fabricate the sensor. Furthermore, the length of 
the TCF section can be changed in order to maximize the free-spectral range according to the RI that 
will be measured. 
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