PRL 95, 053902 (2005)

PHYSICAL REVIEW LETTERS

week ending
29 JULY 2005

Discrete Talbot Effect in Waveguide Arrays
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We report the first observation of discrete Talbot revivals in one-dimensional waveguide arrays. Unlike
continuous systems where the Talbot self-imaging effect always occurs irrespective of the pattern period,
in discrete configurations this process is only possible for a specific set of periodicities. Recurrence of
different input periodic patterns is observed in good agreement with theory.
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The repeated self-imaging of a diffraction grating was
first observed by Talbot [1] in 1836. A few decades later
Rayleigh explained this remarkable effect by showing
that any periodic one-dimensional field pattern reappears,
upon propagation, at even integer multiples of the so-called
Talbot distance z; = D?/A, where D represents the spatial
period of the pattern and A the light wavelength [2]. This
process, being a direct result of Fresnel diffraction, is
among the most basic phenomena in optics [3-7]. In
addition to the integer Talbot effect, fractional revivals
are also known to occur at distances that are rational mul-
tiples of z, i.e., z/z;y = p/q, where p and q are relatively
prime integers. In fact, as shown in several studies, these
fractional Talbot images consist of ¢ coherently super-
imposed and equally spaced copies of the initial image
[3,5,6]. On the other hand, if z/z; happens to be irrational,
the resulting image is fractal in nature [5]. This interesting
relationship between the Talbot effect and number theo-
retic issues has been recently suggested as a possible
means to factorize integers [8].

In the last few years, the interest in optical Talbot effects
has been renewed because of possible applications, not
only in the spatial [9] but also in the temporal domain (in
optical dispersive fibers) [10]. In addition to optics, Talbot
recurrences have been encountered in many other areas of
physics, such as in atom optics [11], Bose-Einstein con-
densates [12], and in the interferometry of large C;, ful-
lerene molecules [13]. Generally speaking, the Talbot
process belongs to a broader family of phenomena exhib-
iting wave packet revivals [14]. Revivals of this sort can
occur, for example, in the generation and detection of
atomic Rydberg electron wave packets [15], in molecular
systems [16], in quantum billiards and carpets [14,17],
during Bloch oscillations [18], and in systems described
by the Jaynes-Cummings model [14], just to mention a few.
Yet, so far, the Talbot process has only been investigated in
continuous systems using either the Fresnel equation (in
optics) or its mathematically equivalent Schrédinger equa-
tion in atom optics.
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Quite recently there has been considerable interest in
wave propagation phenomena in discrete structures [19].
As in solid state physics, such optical discrete or lattice
configurations are known to exhibit a succession of al-
lowed Floquet-Bloch bands and forbidden band gaps. In
weakly coupled systems, the Floquet-Bloch states can be
accurately described by local modes and thus the tight-
binding approximation is applicable [20]. As a result, the
field evolution equation becomes effectively discretized. In
optics, arrays of evanescently coupled waveguides [19] or
chains of coupled microresonators [21] are prime examples
of such structures where discrete wave dynamics can be
observed and investigated. Unlike in the bulk, where the
dispersion relation (of the paraxial Fresnel or Schrodinger
equation) is parabolic, in lattices the dispersion curve has a
cosinelike character. This in turn can lead to altogether new
phenomena (for example, zero or anomalous diffraction)
that have no analogue in the bulk [22]. The question
naturally arises as to whether the Talbot effect is also
possible in discrete systems. And if so, how does it differ
from that occurring in continuous systems?

In this Letter we report the experimental observation of
discrete Talbot effects in weakly coupled waveguide ar-
rays. Our theoretical analysis indicates that Talbot recur-
rences occur only when the period N of the initial pattern
belongs to the set N € {1, 2, 3, 4, 6}. This is unlike what
occurs in the continuous Talbot process where the revivals
are period independent. Our experimental results were
found to be in good agreement with theoretical predictions.

To analyze the discrete Talbot effect, let us hypotheti-
cally consider an infinite array of weakly coupled discrete
elements. Depending on the nature of the array, these ele-
ments may be, for example, optical waveguides or coupled
microcavities. In such arrangements the modal electric
field amplitudes evolve according to [19,21]

du,
d¢

where k stands for the coupling coefficient between ele-

i + K(Un+1 + Un—l) =0, (1)
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ments, and the variable ¢ may represent either distance
(as in the case of waveguide arrays) or time if microcavi-
ties are involved. Equation (1) is known to admit peri-
odic Floquet-Bloch—like solutions, of the form U, =
exp(inQ) exp(iA€), where Q is a phase-shift among suc-
cessive sites and A is an eigenvalue, given by A =
2k cos(Q). For the Talbot effect to take place, the input
field distribution should be periodic, and thus in gen-
eral U,y = U,, where N represents the spatial period
of the input. Because of this periodic boundary condition,
Q can take values only from the discrete set Q,, = m#,
where 0 =27/N and m =0,1,2,..., N — 1. Therefore,
as a result of periodicity, the field evolution at site n
can be in general described through the orthonormal
set of functions a{™ = N~2exp(inQ,,) exp(iA, &), ie.,

EN) = Eﬁ;gcma(ﬂ. It is therefore clear that field revivals
are possible at intervals é if A jé = 2v7r (where v is an
integer), and hence the ratio of any two eigenvalues must
be a rational number; i.e., A;/A; = p/q, where p and g are
relatively prime integers. From the ratio A,/ A, one arrives
at the conclusion that cos(27/N) must also be rational for
field revivals to occur. In addition, one can also directly
show that the intensity patterns will also repeat if the ratio
(A, —A)/(A; — A)) = p/q is also rational, where the
eigenvalue indices w,v,i,j €{0,1,...,N — 1} and are
taken at least three at a time. By considering the ratio
(A3 — Ag)/(A; — Ay), one can then reestablish the fact
that cos(27/N) should be rational. Therefore, for discrete
Talbot revivals (field or intensity) to occur, it is necessary
that cos(2w/N) = p/q; i.e., it is a rational number. The
question now is this: For which values of N is cos(277/N) a
rational number? We address this issue by first observing
the fact that all higher-order eigenvalues can be obtained
from the first one, using Chebyshev polynomials T,,(x);
that is, cos(mf) = T,,(cos(f)), where 6 = 27/N, and
T, (x) = S " ym=2k where [m] represents the integer
part of m. We note that all the Chebyshev coefficients
cgcm) are integer numbers and, of importance to this dis-
cussion, is the fact that the first Chebyshev coefficient is
given by cgm) = 2"~ Given that cim) are integers, then
cos(2mr/N) is rational if and only if cos(27/N) is ra-
tional. To find all possible N’s that will permit Talbot
recurrences, we first assume that N is odd. From the
relation Ty(cos(#)) = cos(NB) = 1, one obtains the fol-
lowing polynomial in cos(6): 2V !(cos(9))¥ + --- +
cﬁlv 1] cos(#) — 1 = 0. By applying the rational root theo-
rem, the possible rational roots of this polynomial, if any,
should belong to the set +{1,1/2,1/22, ..., 1/2N 1} Tt
turns out that these are indeed roots only if N = 1, 3. For
N =5, cos(2m/5) = (/5 — 1)/4 is irrational, and in ad-
dition for any odd integer N greater than 6, we expect that
1/2 < cos(2m/N) < 1. Since from the previous discussion
this is impossible, then cos(277/N) is rational only if N =
1,3. By using similar techniques and the fundamental
theorem of arithmetic (unique factorization theorem), one

can then show that for even N, cos(27/N) is rational only
if N = 2, 4, 6. Therefore, strictly speaking, discrete Talbot
revivals are possible only for a finite set of periodicities
N €11,2,3,4, 6}, where N = 1 represents the trivial case
of a discrete plane-wave solution. For any other periodicity
in general, the field evolution is nonperiodic. This is in
contrast to what happens in the continuous Talbot case
where the recurrences happen to be period independent.
Of course, for specific periodic inputs, it is also possible to
have revivals even when N does not belong to the above
mentioned set. This may happen in cases where only a
subset of eigenvalues is involved (because of the input
pattern) that happen to be rational with respect to each
other.

We will now illustrate some of the aspects associ-
ated with the discrete Talbot effect by means of rele-
vant examples. Let us first assume a binary pattern at the
input. More specifically, let U, = ayexp(in¢) for even n
sites and U,, = b, exp(in¢) for odd. In this case, one can
show that the field in the even or odd elements evolves
according to U,, = [(ag, by) cos(Qxé cos(p)) + i(by, ag) X
sin(2x & cos(¢p)) ] exp(inep). Figure 1(a) depicts periodic
intensity revivals when the binary input is {1,0, 1,0, ...}.
The intensity Talbot ““carpet’ corresponding to this case is
shown in units of coupling lengths L. = 7/2k. For this
example where b, = ¢ = 0, the patterns reappear every
L,; i.e., the discrete Talbot distance is £ = L. An inter-
esting case arises when the array is excited at an angle (at
a finite Bloch momentum [19]) and thus the binary input
is phase shifted according to {e'?, 0, ¢3%,0,...} (ap = 1,
by = 0). From the previous discussion, one then finds that
this latter case, the discrete Talbot period, is given by &7 =
L./ cos(¢). It is interesting to note that as ¢ approaches
77/ 2 the Talbot revivals slow down and totally disappear at
¢ = /2 (i.e., when the input pattern is {1,0, —1,0,...}),
as shown in Fig. 1(b). One may interpret this effect from
the fact that the diffraction or dispersion of the array is zero
in the middle of the Brillouin zone (at 7/2) and so the
Talbot process that derives from these effects vanishes.
Figure 1(c) shows another Talbot intensity carpet when
the input periodic pattern {1,0,0, 1,0,0, ...} has a period
N = 3. In this case the intensity in the initially excited
channels evolves according to (54 4cos(3«£))/9,
whereas in the unexcited channels it varies like (2/9)(1 —
cos(3k¢€)). For this pattern the Talbot period is given by
&r = 4L./3. In general, for N € {1,2, 3,4, 6} and for in-
phase excitations, the Talbot recurrence distance is given
by the largest period é7 = 277/(A; — A;) that results from
the eigenvalues involved in the initial pattern.

To experimentally demonstrate discrete Talbot effects,
we used a channel waveguide array consisting of 101
guides. This array was fabricated on 70 mm long Z-cut
LiNbO; wafer using standard lithography and titanium in-
diffusion techniques [23]. The center-to-center spacing
between the array channels was 15 pum. The interchannel
coupling length was measured experimentally as a function
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FIG. 1 (color online). Talbot intensity ‘“carpets’” for different
input field patterns: (a) {1,0,1,0,...}; (b) {1,0,—-1,0,...};
(¢) {1,0,0,1,0,0,...}.

of wavelength (as shown in Fig. 2) by fitting the diffraction
pattern arising from the excitation of a single waveguide to
that expected from theory; i.e., U, (&) = (i)"J,(2x€) [24],
where J,(x) represents a Bessel function of the nth order.
In addition, using the beam deflection scheme, we experi-
mentally probed the dispersion relation (dk,/dk, vs k) of
the array. The displacement curve was found to be sinu-
soidal, which justifies the use of the tight-binding approxi-
mation (or coupled-mode theory) in Eq. (1).

In the experimental setup shown in Fig. 3 we used a
HP81680 tunable diode laser. The beam was shaped, using
a telescope, to be highly elliptical (500 X 3.5 um full width
at half of maximum) and was focused by a 10X micro-
scope objective onto the input facet of the array sample.
Amplitude transmission masks, with periodicities that are
multiples of the array interchannel spacing and exhibiting
different patterns, were fabricated using laser writing and
etching techniques. The masks were then put in contact
with the sample for clean in-phase mode excitation. To
control the tilt of the input beam and hence the initial phase
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FIG. 2 (color online). Coupling length of the array used in the
experiment as a function of wavelength.

difference between adjacent channels, a mirror on a mo-
torized stage was placed between the telescope and the
microscope objective. Because of the sample’s excellent
linear properties (low scattering), we were not able to
observe the Talbot revivals when looking from the top.
Instead, an indirect observation of the Talbot process at the
output of the array was possible by varying the wavelength
(and hence the coupling length) over the full spectral range
of the laser (1456—1584 nm). This change in coupling
strength with wavelength is essentially equivalent to vary-
ing the effective sample length. This in turn allows one to
observe the Talbot effect without affecting the diffraction
properties of the beam.

The experimental results corresponding to the periodic
{1,0,1,0,...},{1,0,—1,0,...}, and {1,0,0,1,0,0, ...} ex-
citation conditions (simulated in Fig. 1) are shown in
Figs. 4(a)—4(c), respectively. These figures depict the in-
tensity at the output of the array as a function of wave-
length, in good agreement with theory. In Fig. 4(a), we
observe a Talbot recurrence and in between an intermedi-
ate state [at (1,3)L./4] where all elements are equally
excited. On the other hand, as per our previous discussion,
in Fig. 4(b) this periodic recursion disappears since the
phase difference between successive waveguides is 7/2.
Similarly, Fig. 4(c) demonstrates Talbot revivals when the

HP tunable Hamamatsu
diode laser Vidicon
1468 — 1584nm Camera

Collimator Fiber

Polarizer

Cylindrical lens Cylindrical lens ~—

FIG. 3 (color online). Experimental setup.
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FIG. 4 (color online). Experimentally observed Talbot re-
vivals for (a) {1,0,1,0,...}, () {1,0,—1,0,...}, and
(¢){1,0,0,1,0,0,...} field pattern excitations.

initial pattern has a period N = 3. The “wavy” nature of
the observed patterns is a consequence of the wavelength
tuning. This introduces wave front aberrations at the input
facet due to the chromatic dispersion in the optical ele-
ments that leads to focal point shifts with wavelength. This
results in a very weak excitation of higher-order bands
which interfere with the lowest order band of interest.
Additional experiments were also performed for the exci-
tation conditions {1,0,0,0,1,0,0,0, ...}, and again very
good agreement with theory was obtained.

In conclusion, we have demonstrated, for the first
time, discrete Talbot revivals in one-dimensional wave-
guide arrays. Unlike continuous systems where the
Talbot self-imaging effect always occurs irrespective of
the pattern period, in discrete configurations this process
is only possible for a specific set of periodicities. Before
closing, we would like to note that our results may be
relevant to other areas of physics where such Talbot recur-
rences may be observed. These include, for example, opti-
cal wave propagation in photonic crystal structures and

Bose-Einstein condensates in optically induced periodic
potentials [14].
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