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We study the re¯ection of one-dimensional spatial solitons at the non-linear interface
between a Kerr-type medium and a linear medium. Our study places emphasis on
determining the physical conditions under which the beam re¯ected by the non-linear
interface is still a spatial soliton. We ®nd that for small angles of incidence an elastic
internal re¯ection takes place, in the sense that the re¯ected soliton is essentially the
same as the incident one. For incidence angles near a critical angle, the re¯ected soliton
becomes less intense and its re¯ection angle is smaller than the angle of incidence.
Finally, for spatial solitons with input angles well above the critical angle, the main part
of the energy is transmitted to the linear medium, and no soliton is internally re¯ected.

1. Introduction
The behaviour of electromagnetic radiation falling upon the boundary of two di�erent
media has always been an attractive problem from the physical and practical point of view.
In particular, the special cases of non-linear optical interfaces, that is, when at least one of
the media exhibits some kind of optical non-linearity, have given rise to a broad variety of
interesting phenomena. Among them, we can ®nd ®lamentation [1], optical bistability [2],
surface waves [3, 4], etc. Furthermore, the proposed practical applications of these phe-
nomena include controllable scanning beams [5], optical logic gates [6], weak beam am-
pli®cation [7] and so on.

From the physical point of view, the exact way in which these phenomena occur de-
pends on the speci®c non-linear media at both sides of the interface. A major emphasis has
been given to non-linear interfaces with Kerr-type materials, which include the linear±non-
linear [1, 6] and the non-linear±non-linear [8] interfaces, but di�usive [4, 5, 9], saturable and
quadratic [3] non-linearities also have been considered.

In the speci®c case of an optical beam falling upon a linear±Kerr-like interface, previous
studies have shown the excitation of spatial solitons by a transmitted beam [1] and of non-
linear surface waves [10, 11]. Re¯ection and transmission of self-focused channels at Kerr-
type±Kerr-type and at Kerr-type±saturable absorber interfaces also have been analysed
[12, 13]. However, to the best of our knowledge, the particular problem of the internal
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re¯ection of a bright spatial soliton has not been analysed. This problem may ®nd prac-
tical applications when the spatial soliton acts as an optical waveguide for a weak beam of
di�erent wavelength [14].

In this paper we analyse, from the numerical and the theoretical point of view, the
behavior of a one-dimensional bright spatial soliton in a medium with cubic non-linearity
as it reaches the boundary with a linear medium. In particular, we are interested in
determining the conditions under which a spatial soliton is obtained after re¯ection by the
interface. As we will see later, a spatial soliton, almost identical to the incident one, is
re¯ected for incidence angles below a critical angle. For intermediate angles of incidence a
soliton is also re¯ected, but it is di�erent from the incident one. A re¯ected soliton is not
obtained for angles of incidence well above the critical one.

In Section 2 we present the physical and the mathematical description of our
problem. We de®ne the fundamental physical parameters and we give the modi®ed
NLSE which describes the incidence of a bright spatial soliton at the interface with a
linear medium. In Section 3, we present the numerical results that characterize our
non-linear interface. In particular, we use a numerical algorithm based on the Inverse
Scattering Transform (IST) [15] to determine whether the re¯ected beam is or is not an
exact spatial soliton. In Section 4 we apply the particle-like technique [5, 16] to describe
the internal re¯ection of the incident spatial soliton. Finally, Section 5 gives the con-
clusion of our work.

2. The physical model for the non-linear interface
Figure 1 illustrates the geometry of the non-linear interface in which we are interested. The
interface lies in the y±z plane at x � 0, it separates a Kerr-like non-linear medium on the

Figure 1 A bright spatial soliton falling upon

an interface between a Kerr-like non-linear

and a linear media.
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left and a linear medium on the right. The non-linear medium is characterized by a
refractive index of the form

n1�I� � n01 � ~n2I�x; z� �1�
where n01 is the linear refractive index, ~n2 is the non-linear refractive index and I�x; z� is the
intensity of light. Strictly speaking, Equation 1 describes a Kerr non-linear medium, but
we point out that it also may represent some other physical situations of current interest. A
photorefractive crystal, for example, exhibits a saturable Kerr non-linearity if the drift
mechanism dominates [17, 18]. Therefore, Equation 1 can be valid for experiments with
these crystals if the saturation parameter is small enough.

On the other hand, the linear medium on the right of the interface is characterized by a
constant refractive index n02 and, in order to be able to study the internal re¯ection of a
spatial soliton, it is assumed that n01 > n02. As it is depicted in Fig. 1, a bright spatial
soliton propagating within the non-linear medium falls at an angle hi on the interface. Part
of its energy is transmitted to the linear medium in the form of a linear beam which will be
di�racted, and the remaining energy will be re¯ected back into the non-linear medium at
an angle hr. Our problem consists in determining whether this re¯ected beam is or is not a
spatial soliton. In the case that the non-linear interface re¯ects a soliton, the question is
how to obtain its properties, such as its width, its re¯ection angle, and its transversal
spatial shift.

For the mathematical description of our problem we consider an electric ®eld propa-
gating in the positive direction of the z-axis, with a linear polarization parallel to the
interface:

Ey � 1

2
a�x; z� exp��i�xt ÿ k2z�� �2�

where a�x; z� is the transverse beam envelope, x is the carrier frequency, and k2 is the
wavenumber. We assume that the paraxial approximation is valid and, in consequence, the
beam envelope satis®es the equation

2ik2
@a
@z
� 1

2

@2a
@x2
� k22

dn�x�
n02

a �3�

where dn�x� represents the contribution to the non-linear refractive index. Given the op-
tical properties of the two media at both sides of the non-linear interface, Fig. 1, the
refractive index pro®le takes the form

dn�x� � ��n01 ÿ n02� � ~n2I �f �x� �4�
where f �x� is a function which describes the spatial behaviour of the interface. If the
interface is abrupt, we can use a step function for f �x�; it means f �x� � U�x�, where
U�x� � 1 if x � 0 and U�x� � 0 for x > 0. On the other hand, we will use
f �x� � s�x� � 1=2�1ÿ tanh�jx�� to describe a general interface, where j represents the
physical steepness of the interface. Notice that s�x� ! U�x� as j increases.

If we sustitute Equation 4 into Equation 3 we obtain

i
@a
@Z
� 1

2

@2a
@X 2
� Rf �X ��D� jaj2�a �5�

where D � �n01 ÿ n02�=~n2ja0j2 represents the normalized refractive index di�erence;
R � Ld=Lnl, where Ld � k2n02x20 is the di�raction length and Lnl � �1=k2~n2ja0j2� is the
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characteristic non-linear length. Moreover, Z � z=Ld, X � x=x0 and the beam envelope has
been normalized to a0. Finally, x0 and a0 are the width and amplitude, respectively, of the
initial beam.

Throughout this paper we will concentrate on the internal re¯ection of ®rst-order bright
spatial solitons, and therefore we further assume that x0 and a0 satisfy the relation
k2n02x20~n2ja0j2 � 1, which implies R � 1 in Equation 4. Notice that under this assumption

as�X ; Z� � sec h��X ÿ X0� ÿ VZ� exp�ÿiU�X ;Z�� �6�
is an analytical solution of Equation 5 valid for beams well inside the non-linear medium,
where f �X � � 1. In Equation 6 U�x; z� � V �X ÿ X0� � �1ÿ V 2�Z=2� u0 is the total phase
of the soliton with V � tan hi being the normalized transverse velocity of the spatial
soliton, and with X0 < 0 (jX0j � 1) and u0 being constants. Equation 6 is no longer valid
near the non-linear interface, of course, and it is necessary to consider the spatial de-
pendence of f �X � in Equation 5. In the following section we numerically obtain the
fundamental properties of the non-linear interface under the incidence of a bright spatial
soliton, and in Section 4 we will give the corresponding analytical and physical support.

3. Numerical simulations of the internal re¯ection of a spatial soliton
Equation 5 has been solved by standard numerical techniques [19]. We neglect any
transient e�ect in the formation of the spatial soliton within the non-linear medium and
assume Equation 6, with Z � 0 and /0 � 0, as the initial condition for the beam. On the
other hand, to avoid numerical noise caused by an abrupt interface, we use f �X � � s�X �,
with j � 10. This proved to be a good representation for the non-linear interface.

Figure 2 shows the total internal re¯ection of the spatial soliton, obtained for an initial
transverse velocity of Vin � 0:5. As we can see, the initial soliton travels ®rst within the
non-linear medium, and then it falls upon the interface, where it is re¯ected by the non-
linear medium. Notice that although the spatial soliton narrows as it approaches the
interface, the peak intensity and the width of the re¯ected soliton are practically the same
as those of the initial soliton. Therefore, the soliton energy is conserved during the re-
¯ection at the non-linear interface. We will refer to this case as an elastic internal re¯ection
of the spatial soliton.

The elastic internal re¯ection of the soliton is progressively lost as we increase the angle
of incidence of the spatial soliton, and we obtain what we will call an inelastic internal

Figure 2 Total internal re¯ection of a bright

spatial soliton obtained for V � 0:5. The initial

position of the soliton was x0 � 3.
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re¯ection. Figure 3 shows the behaviour of the non-linear interface when the initial
transverse velocity of the spatial soliton is (a) Vin � 1:5 and (b) Vin � 1:9. In both cases, the
soliton clearly penetrates the interface, and part of its initial energy is transmitted to the
linear medium as a beam which spreads out due to di�raction. The re¯ected beams carry
only a fraction of the initial soliton energy. We have numerically computed the eigenvalues
of the re¯ected beams [15], and we obtained that they are also spatial solitons but with
smaller form factors. The form factor is a parameter which indicates how much the soliton
amplitude (width) decreases (increases), while conserving the same area of a ®rst-order
soliton.

As is evident from Fig. 3, the form factor of the re¯ected soliton decreases as we increase
the transverse velocity of the incident soliton. This is also shown in Fig. 4, where we plot
the form factor of the re¯ected soliton as a function of the transverse velocity of the
incident soliton. Notice that the form factor decreases monotonically with Vin. For large
enough values of Vin, the intensity of the re¯ected beam is too small, and it will not be able
to support a spatial soliton.

The most important quantitative characteristics of the internal re¯ection of the spatial
soliton at our non-linear interface are given in Figs 5 and 6. In Fig. 5 we have plotted the
position of the beam centre as a function of the propagation distance for several values of
the transverse velocity of the incident spatial soliton. The beam centre is de®ned in the
usual form

x̂ �
R

a�Xa dXR
aa� dX

�7�

and its dependence with the propagation distance gives us information about the re¯ection
angle, the penetration depth of the incident soliton at the interface, and also about the

Figure 3 Inelastic internal re¯ection of a spa-

tial soliton obtained for an initial transverse

velocity of (a) V � 1:5 and (b) V � 1:9. Part of

the initial energy is split into the re¯ected and

transmitted beams, but the re¯ected beams are

still spatial solitons.

Internal re¯ection of one-dimensional bright spatial solitons

691



Goos±HaÈ nchen shift [20, 21]. First, the transverse velocity of the soliton at any propa-
gation distance Z is taken as the Z derivative of the x̂ versus Z curve. Figure 5 shows that
for Vin � 1, the incidence and the re¯ection angles, taken far away from the incidence
point, are essentially the same. However, as the transverse velocity of the initial soliton
increases the transverse velocity of the re¯ected soliton decreases. This important char-
acteristic of the non-linear interface is plotted in Fig. 6, where we see how far away from
the classic condition Vin � Vout we are as the incidence angle increases. Notice that the
deviation from the classic condition varies in a non-linear way with the initial transverse
velocity.

On the other hand, Fig. 5 also shows that the penetration depth of the soliton at the
interface increases as Vin increases. At the same time, the Goos±HaÈ nchen shift also

Figure 4 The form factor of the re¯ected sol-

iton as a function of the transverse velocity of

the input soliton.

Figure 5 The position of the beam center as a

function of the propagation distance for several

values of the transverse velocity of the input

spatial soliton, (a) V � 0:5, (b) V � 1, (c)

V � 1:5, (b) V � 1:9, (d) V � 2:1.

E. Alvarado-MeÂndez et al.

692



increases as one increases the incidence angle. We now give an analytical description of the
numerical results obtained in this section.

4. Analytical description for the soliton internal re¯ection
at the non-linear interface
Our analytical description of the internal re¯ection of a spatial soliton at the non-linear
interface is based on the particle-like behaviour of the soliton [20, 21]. According to this
approach, the most important characteristics of the non-linear interface can be obtained
by solving the dynamical equation for the soliton centre. For our modi®ed NLSE,
Equation 5, the propagation of the soliton centre, as de®ned in Equation 7, satis®es the
following equation

iP0
dx̂
dZ
� 1

2

Z
a
@a�

@X
ÿ a�

@a
@X

� �
dX �8�

where P0 �
R

aa� dX . This equation was obtained by applying the operator
R

a�X dX to
Equation 5, and by adding this with the result of applying the operator

R
aX dX to the

complex conjugate of Equation 5. If we now take the Z derivative of Equation 8 and use
again Equation 5, we ®nd that the soliton centre satis®es the equation of motion,

P0
d2x̂
dZ2
� D

Z
@f �X �
@X

aa� dX � 1

2

Z
@f �X �
@X

�aa��2 dX �9�

For this analytical description, we can use f �X � � U�X �, and replace df �X �=dX by the
Dirac delta function d�X �. Moreover, we make the strong assumption that the soliton
moves like a particle without changing its pro®le. From the numerical results presented
above, this condition is satis®ed only for small enough incidence angles when an elastic
re¯ection occurs. However, as we will see later, this assumption allows us to give a
quantitative estimation of several important physical parameters. From the mathematical
point of view, this assumption means that

Figure 6 Transverse velocity of the re¯ected

soliton as a function of the transverse velocity

of the input soliton.
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aa� � sec h2��X ÿ x̂�Z��� �10�
Under this condition, Equation 9 can be rewritten in the following form

P0
d2x̂
dX 2
� F �x̂� �11�

which establishes the motion of a particle x̂ of mass P0 under the force F �x̂� given by

F �x̂� � ÿD sec h2�x̂� ÿ 1

2
sec h4�x̂� �12�

The trajectory of the beam centre can now be obtained by solving Equation 11 with the
initial conditions

dx̂
dZ

����
Z�0
� Vin

x̂
��
Z�0 � ÿx0 �13�

However, an alternative to solve the Newton's equation of motion, Equation 11, is to use
the energy conservation principle. This is possible, because the e�ective force of Equation
11 can be associated with the e�ective potential

v�x̂� � D�tanh�x̂� � 1� � 1

2
tanh�x̂� ÿ 1

3
tanh3�x̂� � 2

3

� �
�14�

in terms of which the Hamiltonian acting on the beam centre is obtained

H � P0

2

dx̂
dZ

� �2

� v�x̂� � P0

2
V 2
in � v�x0� �15�

Notice here that the ®rst parameter we can estimate is the critical incidence angle at which
an elastic internal re¯ection of the soliton will occur. This is obtained when the kinetic
energy of the initial soliton is transformed into potential energy. In other words

P0

2
V 2
cr � v�1� �16�

or, using Equation 15:

Vcr � 4

P0
D� 1

3

� �� �1=2
�17�

This result is in good agreement with our numerical simulations, where we used P0 � 2 and
D � 1. It is worth pointing out that a ®rst order soliton with higher energy (higher form
factor) will have a smaller critical incidence angle.

The penetration length, Xp, is obtained from the condition V � 0, which is satis®ed if

Xp � 1

2
ln

V 2
in

V 2
cr ÿ V 2

in

� �
�18�

The trajectory of the soliton centre predicted in Equation 18 allows us to give ap-
proximate values for the penetration depth and also for the Goos±HaÈ nchen shift occurring
during the elastic internal re¯ection of the soliton. The Goos±HaÈ nchen shift, DZ, is de®ned
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as DZ � �Z2 ÿ Z1�, where Z1 and Z2 are the points at which the parabolic-like trajectory of
the soliton centre crosses the Z-axis (see Fig. 5). DZ can be estimated by assuming a
parabolic expansion around the point at which Xp occurs; that is,

x̂�z� � xp � 1

2

d2x̂
dz2

����
xp

�zÿ zp�2

Noting that

d2x̂
dz2

����
xp

� ÿ D� 1

2

� �
the Goos±HaÈ nchen shift is estimated to be

Dz � 2
xp

�D� 1=2�
� �1=2

�19�

for D� 1.

5. Conclusions
We have studied the internal re¯ection of a bright spatial soliton at a non-linear interface,
which divides a Kerr-like and a linear medium. Our study was focused on the possibility of
obtaining a re¯ected spatial soliton. Our results indicate that there are three fundamental
cases. In the ®rst case, for Vin < Vcr, the re¯ection is an elastic one, and it is possible to give
analytical estimations for the penetration depth and for the Goos±HaÈ nchen shift. In the
second case, for Vin � Vcr, we have `inelastic' internal re¯ection of the soliton. The re¯ected
soliton has a smaller form factor than the incident one, and also jVoutj < jVinj. Finally, for
large input angles �Vin > Vcr�, a large part of the input energy is transmitted to the second
medium in the form of a spreading beam. In this case, the re¯ected beam does not form a
spatial soliton due to its low intensity.
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