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Abstract
We present a fundamental study on the capability of a crossing of two
optical waveguides based on dark spatial solitons to act as a controllable
optical beam splitter. Our study is based on the fact that the guided beam is
diffracted at the waveguide crossing by an effective phase screen formed by
the soliton collision profile. We find that when the two dark solitons are
immersed into the same finite bright background, the energy of a guided
beam can be split into the desired optical channel according to the collision
angle. We also found that even the corresponding phase diffractive screen
possesses a quite different structure in the bright and dark soliton cases; the
physics involved is the same.
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1. Introduction

Controlling light-by-light represents the aim of photonics, and
spatial solitons seem to be good candidates to accomplish
some of the required operations and functions. The control of
spatial solitons can be carried out, for example, by the presence
of another soliton through the inherent forces between them.
Optical logic gates based on the changes of position that take
place during a bright-spatial soliton collision (Islam et al 1992),
or during the interaction of two close solitons (Kodama and
Hasegawa 1991) can be constructed.

In this way, spatial solitons can also control the trajectory
of weak beams if they are used as optical waveguides. Two
fundamental ways of doing so with bright spatial solitons
have been proposed. In the first approach, a weak beam
guided by one spatial soliton follows the resulting trajectory
when the soliton interacts with another close soliton (Shalaby
and Barthelemy 1992). In the second case, the trajectory of
the weak beam is controlled by an effective grating phase
diffraction when the soliton collides with another soliton

* The authors would like to dedicate this work to the memory of G E Torres-
Cisneros.
5 In memoriam.

(Luther-Davies and Xiaoping 1992). On the other hand,
controlling weak beams is also possible in a self-defocusing
medium, and a good example is the optical Y junction obtained
when a weak beam is forced to follow the optical waveguides
emerging from a secondary dark spatial soliton generation
(Zhao and Bourkoff 1989). However, to the best of our
knowledge, no attempts have made to explore the possibilities
of controlling weak beams making use of dark spatial soliton
interaction or collision.

The interaction between two ideal dark solitons is
governed by an effective repulsive force in contrast with the
force between two bright solitons, which depends on the
relative phase of the solitons (Tomlinson and Hawkings 1989).

Ideal dark spatial solitons require finite transversal
intensity as x → ±∞. Instead, a real dark spatial soliton
consist of an intensity depletion into a finite bright background.
Numerical results have demonstrated that a real dark spatial
soliton exhibits quasi soliton behaviour provided the width of
the bright background is at least ten times the width of the
soliton (De la Fuente et al 1991). A similar conclusion applies
for the collision of two real dark solitons if they are immersed
into the same bright background (Thurston and Weiner 1991).
However, if the spatial solitons are used as optical waveguides,
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a practical situation is that each dark soliton possesses its
own finite bright background beam. Nevertheless, this
bright background beam will become chirped because of
the simultaneous effects of diffraction and self-defocusing
(Thurston and Weiner 1991), and it is expected that this will
affect the dynamics of a quasi-dark soliton of a collision of two
optical channels (Torres-Cisneros et al 1995).

In this paper we analyse the physical properties of a
collision of two optical waveguides based on ideal dark spatial
solitons, in order to explain the physical mechanisms which can
operate in an X-junction. We know the essential differences
between bright and dark soliton behaviour, nevertheless,
through this work we will use some useful analogies. In
section 2 we provide the theoretical model and some numerical
solutions for the real dark spatial soliton. The characterization
of an X-junction based on the collision of two ideal dark spatial
solitons is analysed in section 3. Finally, section 4 gives the
conclusions of our work.

2. Theory

We are interested in describing the behaviour of a guided
beam during a crossing of two optical waveguides based on
ideal dark spatial solitons. Physically, this situation is met for
example, when the two dark solitons are immersed into the
same sufficiently wide bright background. The appropriate
physical model is given by the coupling of two laser beams
with the same polarization, but with different wavelength,
within a negative Kerr-type medium (De la Fuente et al 1991).
We assume that the beams propagate in the positive direction
of the Z -axes, and that the physical conditions for a two-
dimensional approach are satisfied. From the mathematical
point of view, the waveguide property of a spatial soliton
is explained in terms of the cross-phase modulation effect
in a Kerr medium (Agrawal 2002). Denoting by A1 and
A2 the normalized transversal envelopes of the strong and
weak beams, respectively, their evolutions within the nonlinear
medium are governed by

i
∂A1

∂Z
= 1

2

∂2 A1

∂X2
− |A1|2 A1 − 2|A2|2 A1 (1)

i
∂A2

∂Z
= 1

2
rn
∂2 A2

∂X2
− 2β|A2|2 A2 − β|A1|2 A2 (2)

where the linear approximation (|A1|2 � |A2|2) could neglect
the terms with |A2|2. In equations (1) and (2) the propagation
distance Z is measured in units of the diffraction length of the
intense beam, while the transversal distance X is normalized
to the initial width of the intense beam. In equation (2)
rn = n01λ2/n02λ1, with n0i is the linear refractive index of
the medium at wavelength λi , and β = 2λ1/λ2.

Because equation (1) is the NLSE it admits single and
multiple dark soliton solutions (Blow and Doran 1985), and
among them we take for this section that which describes the
collision of two dark solitons. For the specific case of two
dark solitons of the same amplitude, travelling with opposite
transversal velocities, the two dark soliton solution takes the
form (see equation (10) of Blow and Doran (1985)):

A1(x, z) = 1 − 2i f (x, z)

g(x, z)
(3)

Figure 1. Crossing of two optical waveguides based on dark
solitons as they propagate within the nonlinear medium. The graph
was obtained evaluating equation (2) at the indicated propagation
distances Z , with ς1 = 0.6 and ς2 = −0.4.
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with µ =
√

1 − ς2
i . The two dark solitons involved in

equation (3) are fully described by the parameters ςi , which
lie in the range −1 < ςi < 1 and determine the width of each
soliton 1/ςi , their contrast ς2

i , and their transverse velocities
V = 2ςi . If one of these ςi is zero, the corresponding soliton
will be a black soliton; otherwise, the soliton will be a gray
soliton, with its width and contrast increasing and decreasing,
respectively, as |ςi | is increased.

As a representative example, in figure 1 we show the
interaction of two ideal dark solitons, obtained by plotting
equation (3) with ς1 = 0.6 and ς2 = −0.4. Note that the
crossing of two dark solitons, in general, does not exhibit the
oscillatory behaviour which characterizes the collision profile
of bright solitons. As we will see later, this difference is
of fundamental importance for the splitting capabilities of a
crossing of two waveguides based on dark spatial solitons.

By setting ς1 = ς2 = ς , equation (3) describes
the interaction of two identical dark solitons travelling with
opposite transverse velocities. As Z0 controls the separation
between the initial solitons, using large enough value of Z0 in
order to generate two well separated dark solitons, equation (3)
can be used to properly analyse a symmetrical crossing of
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(a)

(b)

Figure 2. Optical Y junction based on ideal dark spatial solitons.
(a) The waveguide crossing and (b) the trajectory followed by the
probe beam. The parameters used were ς = 0.1, rn = 1, Z0 = 15
and β = 1.8.

two dark spatial waveguides. Therefore, we use the following
initial condition for the intense laser beam, A1:

A1(X, Z) ≡ φ(X, Z0)

= 1 − 4 exp(2vX)[iς sinh(4vς Z0)− v cosh(4vς Z0)]

1 − [exp(4vX) + 2
v

exp(2vX) cosh(4vς Z0) + 1
v2 ]
.

(4)

We stress here that the waveguide crossing generated by
this initial condition is also ideal, in the sense that it still
requires an infinite bright background. However, the practical
realization of such a waveguide crossing can be performed if
the appropriate two soliton solution of equation (4) is created
on a wide enough laser beam. If this happens, we can launch
a probe beam of a slightly different wavelength at one of
the initial waveguides, and quantify the amount of its energy
that can be split at the waveguide crossing. This probe beam
can be coupled to the intense beam A1 through the dynamic
equation (2). As the initial condition for the probe beam we
use

A2(X, 0) = exp(−(X − X20)
2/2µ2) exp(iV20(X − X20)) (5)

which represents a Gaussian beam centred at X20, the initial
position of the chosen optical channel (which depends on Z0),
and with transversal velocity V20 (which is determined by ζ ).
In figure 2 we have plotted a typical numerical simulation of
(a) the waveguide crossing and (b) the trajectory of the probe

Figure 3. Relative probe beam energies after the crossing of two
identical dark solitons as a function of the soliton parameter ς . The
initial soliton-based waveguide is referred to as the primary optical
channel. The fixed parameters were rn = 1, Z0 = 15 and β = 1.8.

beam, obtained by solving numerically equations (1) and (2)
with the initial conditions given by equations (4) and (5),
respectively, and using ζ = 0.1, β = 1.8 (a nondegenerate
wavelength case, λ1 �= λ2) and Z0 = 15. Figure 2(a) shows
the waveguide crossing, which for this particular value of ζ ,
looks like as if the solitons do not cross each other. Instead, it
appears that they repel each other as they approach the crossing
region. On the other hand, figure 2(b) shows that the probe
beam, initially launched to the left of the optical waveguide,
is split at the crossing of the waveguides. Here, the original
(primary) optical channel carries 75% of the initial probe beam
energy after the crossing, while the secondary optical channel
carries the remaining 25%.

The amount of probe beam energy that can be directed
by the junction, as the soliton parameter ζ varies, is shown in
figure 3. Here, it is shown that for large transversal velocities
of the solitons (i.e. large values of ζ ), almost all the probe
beam remains at the primary optical channel, in agreement
with previous theoretical work (Akhmediev and Ankiewicz
1993). However, as ζ decreases, the amount of the probe beam
energy directed to the secondary optical channel monotonically
increases, and it reaches significant values for ζ < 0.2. This
result is substantially different to the splitting properties of
the bright soliton case where, for small collision angles, an
oscillatory behaviour for the split energy was found. In
addition to the monotonic behaviour of the energy split by
the junction, shown in figure 3, the crossing of two ideal dark
solitons has the severe inconvenience that the relative phase
between the solitons cannot be varied. This is because they are
not initially uncoupled as in the case of bright solitons. These
two facts may restrict the photonics application of a collision of
dark solitons to fixed splitters and interconnectors. However,
it is important to give a physical reason for the differences
found between the optical junctions based on bright and dark
solitons.

3. Analysis

The numerical results found for the splitting of the probe beam
energy shown in figure 3 can be explained as follows. As was
found in a previous work (Torres-Cisneros et al 1993), the
probe beam is diffracted at the soliton collision zone, therefore
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Figure 4. Profile of the collision pattern of two ideal dark solitons
as a function of ζ . Note that for ζ < 1/2, the collision profile
possesses two dips.

the characteristics of the output probe beam basically depend
on the diffractive screen. This diffractive screen, T (X), is
given by T (X) = exp(−ihβ�(X)), where h is its thickness
and �(X) represents the intensity of the collision pattern.
For the case of a collision of two identical dark solitons, the
collision profile is taken from equation (4) with Z0 = 0, that
is:

�(X) = |A1(X, 0)|2

=
∣∣∣∣∣1 − 4v3 exp(2vX)

(1 − v2) + v2 exp(2vX)[exp(2vX) + 2
v
]

∣∣∣∣∣
2

. (6)

This profile is essentially different to that of the collision of two
bright solitons. It does not exhibit an oscillatory behaviour and
it depends on ζ (Torres-Cisneros et al 2003). This is shown
in figure 4, where for small ζ it consist of two symmetrical
dips of high contrast. As we increase the value of ζ , it causes
the merging of those dips into a single one of low contrast.
Therefore, the collision profile of two ideal dark solitons as a
function of ζ has either one or two intensity dips.

The explanation of this dual behaviour is obtained by
computing the minima of the collision profile. Equating to
zero the X-derivative of �(X) in equation (6), we obtain that
the left and right dips on the collision profile, labelled LD and
RD, respectively, appear for ζ < 1/2 and are centred at

XLD = 1

2v
ln

[
1 − 2ς2

v
−

√
1 − 4ς2

]
,

XRD = 1

2v
ln

[
1 − 2ς2

v
+

√
1 − 4ς2

]
,

(7)

while the central maximum for ζ < 1/2 and minimum for
ζ > 1/2, labelled CD, is centred at

XCD = 1

4v
ln

[
ς2

v2

]
. (8)

We note that the left and the right dips of the collision profile
are not symmetrical about X = 0, and that their separation
decreases as ζ approaches 1/2 (figures 4 and 5). Physically,
the two dips of �(X) appear because A1(X, 0) has a single
minimum at X = XCD, with A1(XCD, 0) = 2ς−1. Therefore,

Figure 5. Position of the minima and the maximum of the collision
profile of figure 4. LD and RD denote, respectively, the position of
the left and right minima which appear for ζ < 1/2. CD denotes the
position of the central maximum for ζ < 1/2 and the central
minimum for ζ > 1/2.

Figure 6. Approximated dark soliton collision and probe beam
profiles for intermediate values of ζ .

A1(XCD, 0) is negative for 0 < ζ < 1/2 and its intensity
profile, �(X), shows the two dips.

We have analysed the nature of �(X) in some detail
because we anticipate that it will produce a complicated
integral when we use it for computing the angular spectrum of
the diffracted probe beam. Denoting by A2d = T (X)A2(X)
the probe beam profile after the diffractive screen, where
A2(X) is the initial probe beam at the collision point, its angular
spectrum is given by

Ã2d(kx ) =
∫

A2(X) exp(−ihβ�(X)) exp(−ikx X) dX . (9)

In order to obtain some insight into the main properties of
Ã2d, we will use a simplified representation of �(X), instead
of using a direct substitution of �(X) from equation (6). For
example, for large collision angles, when ζ > 1/2 and h
is relatively small, we can use the approximation: �(X) ≈
1 − (ς − 1)2 sec h2(X/v), which simulates the single dip
structure of the collision pattern of figure 6. Under these
conditions, the phase diffractive screen takes the form

exp(−ihβ�(X)) ≈ 1 − ihβ�(X)

≈ 1 − ihβ[1 − (ς − 1)2 sec h2(X/v)]. (10)
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Without introducing a significant additional approxima-
tion, we set Ã2d(X) = sec h(X/v) exp(iV20) (instead of equa-
tion (5) with X20 = 0), and obtain the angular spectrum of the
diffracted probe beam:

Ã2d(kx )

=
∫

sech(X/v)[(1 − ihβ) + ihβ(ς − 1)2 sec h2(X/v)]

× exp[−i(kx − V20)X] dX

or

Ã2d(kx ) = [(1 − ihβ) + (ihβ/2)(ς − 1)2(1 + (kx − V 2
20))]

× sech2(π(kx − V20)/2). (11)

Note that the spectrum of the diffracted beam will be
centred at the same frequency as that of the initial beam, and
that its intensity, 1+h2β2[1+(ς−1)2/2]2, is not significatively
affected by ζ when h is small. Therefore, for large collision
angles there is basically no diffraction, and the probe beam is
guided by the initial soliton-based waveguide after the soliton
collision, as was numerically found in figure 3. On the other
hand, when the collision angle is small; that is when ζ is close to
zero, h is large and the phase of the diffractive screen oscillates
rapidly. However, given the double dip structure of �(X) for
ζ < 1/2, we can use the method of stationary phase and, as
a first approximation, consider that the main contribution to
the integral of equation (9) comes from the point X = XCD,
where the collision profile has its central maximum (Jeffreys
and Jeffreys 1978). In order to apply the method of stationary
phase we take the second derivative of�(X) and evaluate it at
XCD. The result is: � ′′(XCD) = −8v4/(ς + 1)2. Therefore,
the spectral intensity of the diffracted probe beam at its initial
central frequency, kx = V20, is estimated to be

| Ã2d(V20)|2 =
∣∣∣∣
∫

sech(X − XCD) exp(−ihβ�(X)) dX

∣∣∣∣
2

≈ 2π

−hβψ ′′(XCD)

≈ πς

4β(1 − ς)2
. (12)

This equation establishes a monotonic decreasing of the
intensity of the spectrum of the diffracted probe beam in the
direction of the primary optical channel as ζ approaches zero,
and it agrees with figure 2. It is important to note here that the
same double dip profile of�(X) allows us to give an additional
qualitative description of the splitting characterization of the
waveguide crossing of figure 4, for intermediate values of
ς (≈1/2), when neither equation (11) or (12) applies. This can
be done by simplifying both the diffractive screen and the probe
beam profiles to square-like functions, as is shown in figure 6.
The key parameter in this approximation is the phase difference
of the central region of the diffractive screen, (1 − 2ς)2. The
ratio of the width of the central peak of the collision pattern,
denoted by a, to the width of the probe beam, denoted by d, is
also important because it determines the influence of the phase
screen on the profile of the diffracted beam. For example, if
d < a, all the information on the diffractive screen will be lost
when we calculate the intensity of the diffracted beam. We can
compute a in terms of ζ from equation (6) in a straightforward
way, but the resulting lack of simplicity will shadow our basic

Figure 7. Intensity of the kx = V20 component of the diffracted
probe beam as a function of ζ . Here, h = 1/2ς and β = 2.

idea6. Therefore, focusing on the physical description of this
approximation, we assume a < d < c to observe the influence
of the approximated diffractive screen on the probe beam.

Substitution of the particular profiles for A2(X) and�(X)
of figure 6 into equation (9), followed by the respective integral
gives

Ã2d(kx ) = 2d sinc[(kx − V20)d]

+ 2a(exp[−ihβ(1 − 2ς)2] − 1) sinc[(kx − V20)a] (13)

from which we can estimate the influence of varying ζ on
the spectral distribution of the diffracted probe beam in the
direction of the primary optical soliton-based waveguide.
Setting kx = V20 in the equation above we obtain:

Ã2d(kx ) = d2

[
1 − 4

a

d

(
1 − a

d

)
sin2[hβ(1 − 2ς)2/2]

]
. (14)

Figure 7 shows a graphical representation of this approxima-
tion. For the particular set of parameters used, h = 1/2ς ,
β = 2, and a/d = 1/2, the curve obtained qualitatively de-
scribes the result of figure 3 for 0.15 < ζ < 0.5. For ζ < 0.15,
equation (14) predicts an oscillatory behaviour which is not
present in figure 3, but it simply indicates that the approxima-
tion of equation (14) is no longer valid because of the rapid
variations in the phase of the diffractive screen, and because
the approximation based on the method of stationary phase of
equation (12) has to be used instead.

4. Conclusions

The three approximations we have presented, for large, small
and intermediate values of ζ , allows us to conclude that the
basic physical mechanism behind the splitting of a junction
based on ideal dark solitons is also diffraction. Thus, though
the corresponding phase diffractive screen possesses quite
a different structure in the bright and dark soliton cases,
the physics involved is the same. This is a very important
result, that unifies the theoretical description of the behaviour
followed by a weak probe beam during the crossing of two
optical waveguides, bright or dark, in Kerr type media.

6 The width of the central peak of the collision pattern is given by: a =
Xm − XCD where Xm = (1/2v) ln{(1 + 2ζ )/v ± [(3ζ + 1)/(1 − ζ )]1/2}.
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