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We show that enhanced compression of short pulses can be obtained by propagating them through a two-level atom
medium characterized by an inhomogeneously broadened atomic line with a spectral hole. The area theorem
remains valid, and consequently there is a slowing down of the pulse area compared with that observed in the
analogous case of an amplifier without any hole. On the other hand, there are relative increases in the pulse time
width and its energy content. Among the special cases, an inhomogeneous atomic line with a zero on the carrier
frequency resonance produces a stable pulse with a zero area.

INTRODUCTION

Not long after the creation of the laser, it was realized that
the production of reproducible and controllable pulses pre-
sented advantageous features. At first, the drive for more
intense sources led to the use of short pulses. However,
their short duration was soon recognized as an ideal feature
that allowed experimenters to explore the domain of ultra-
fast molecular processes.! More recently, the need to pro-
duce laser plasmas or to avoid damage to the material where
propagation takes effect has necessitated the tailoring of the
duration of short pulses.2 One observes that the pulse ener-
gy and the pulse area are determinants in the production of
the desired pulse.

Short-pulse manufacturing3 can be performed intracavity
and extracavity. To distinguish these processes, we will
denominate them as short-pulse production and pulse com-
pression, respectively. Short-pulse production involves the
laser itself and has as an ideal limit the bandwidth of the
amplifier gain profile. For a typical intense-pulse amplifier
(Nd:glass or Nd:YAG), the duration time limit is as small as
a few tenths of a picosecond (6 cm™! < Aw/2wc < 200 cm™1).
However, in practice such a limit cannot be obtained because
the pulse output is a compromise between the amplification
process and the various spectral narrowing mechanisms.?
The efficient use of the amplification profile to produce
ultrashort pulses is an active field of research that is based
mostly on mode-locking techniques. In most of these tech-
niques, the objective is to make a number of modes oscillate
in phase; a pulsed output is obtained with each pulse in the
range of picoseconds. This is the case of self-locking intra-
cavity modulation and passive mode locking by the optical
Kerr effect (OKE). On the other hand, passive mode lock-
ing by an intracavity saturable absorber (one with simulta-
neous & switching has given some of the best results) aims at
the absorption properties of the saturable absorber. There-
fore, the duration of the pulse has, in addition to the width of
the gain curve, the lifetime of the excited state of the satura-
ble absorber® as a lower limit.

Pulse compression, on the other hand, is obtained through
the production of pulse chirping or spectral broadening.
Numerous techniques have been used to obtain pulse com-
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pression, but few have been used to enhance the compres-
sion that occurs naturally during the pulse propagation it-
self.5 The most basic techniques are generalizations of the
signal-compression radar techniques,” in which chirping fol-
lowed by a delay line causes pulse compression. In most
instances, it is common to use nonlinear materials and so-
phisticated technical designs of growing complexity as we
approach near-atomic resonance of high intensity or short-
pulse duration,® where the theory of pulse propagation is
best suited. However, little use has been made of the non-
passive features of the material wherein the propagation
takes effect to obtain the desired result.

When the consideration of the high intensity of the pulses
is made, nonlinear features are brought into play. If the
problem is off resonance, the treatment follows along the
lines of the nonlinear Schrodinger equation (NSE).3 If we
are near resonance, the dielectric where resonant propaga-
tion takes effect is described by an ensemble of two-level
atoms (TLA’s), and the coupled Maxwell-Bloch equations
(MBE’s) are required. In both cases, it is convenient to
distinguish between the transient and the steady behavior of
the pulse propagation. A well-known transient feature is
the growth of a pulse accompanied by pulse compression in a
TLA amplifier.®-1! A steady feature in both cases is the
presence of shape-preserving pulses (solitons). Also, an im-
portant characteristic of steady pulses is the strict relation-
ship between the amplitude and the duration of the pulse,
which has been used in a number of pulse-compression
schemes. :

A straightforward application of the MBE area theorem of
coherent pulse propagation for an absorber was used by
Slusher and Gibbs!2 to compress a pulse. They grew the
area of the pulse to 87 and then let it decrease to its steady
value of 2 by propagation. The result was the successful
compression of the pulse; an elegant theoretical proof of the
reasoning behind this method, in terms of the spectral mo-
ment conservation laws, is given by Michalska-Trautman.!3
Another use of the area theorem is the superposition, during
propagation, of a steady pulse and a narrower weak one,4 a
process that results in a narrower steady pulse. The use of
short-duration NSE solitons resulted in the creation of the
so-called soliton laser, with a pulsed output. In this case,
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Fig. 1. Spectral distribution 2(4’, 0) of the incoming pulse at the
entrance of the active material. The superimposed curve corre-
sponds to the HB atomic distribution g(A’).

the spectral broadening was obtained by propagation in a
thin optical fiber, and the compression was obtained by
using a delay line.1?

The use of chirping as a means of getting pulse compres-
sion has given a special drive to studying methods of produc-
ing chirping. The origin of chirping!® was explained in
terms of dispersion caused by the OKE,!7 the quadratic
frequency dependence, and an analogy with microwave the-
ory. All these linear atomic response models predicted
chirping in the steady state. However, the presence of
chirping in resonant pulse propagation was noticed early.1
‘In this case, the atomic linear response assumption must be
discarded altogether. A thorough theoretical analysis of
OKE stable pulses and the homogeneous atomic broadening
was done by Matulic and Eberly,!8 who predicted the occur-
rence of compressed and chirped optical solitons. Analysis
of the inhomogeneous case has been unsuccessful because of
the inapplicability of the factorization assumption.10.12
Numerical modeling indicates that pulse compression and
chirping will also occur in nonsteady conditions. Experi-
'mental confirmation of such predictions and the exploration
of their possible use for pulse compression are still pending.

Along different lines of thought, Eberly et al.1® have used
selective photoexcitation [hole burning (HB)] of a TLA ab-
sorber to obtain the spectral narrowing of a weak pulse. The
result is quite the opposite of the one intended here, since
the pulse is expanded temporally. This effect suggests the
use of an amplifier with a spectral hole, instead of an absorb-
er, to obtain pulse compression, (Fig. 1). The gain profile
will behave as an experimentally controllable pulse chirp-
er,20 with chirping frequencies at the cusps of the atomic
line, suitable for enhancing the temporal sharpening of the
pulse. For an absorber, the calculation is basically classical,
since the medium atomic inversion remains essentially un-
disturbed. For an amplifier, such an approximation is im-
possible, and greater care should be taken in handling the
problem. However, an attractive reward results when the
hole is centered in the TLA resonance: In such a case, we
inhibit the on-resonance gain, and, consequently, we slow
down the growth of the pulse area. Meanwhile, the off-
resonance gain will produce a broader spectral distribution
for the pulse. The combined effect seems to constitute an
attractive mechanism of pulse compression without the ex-
plosive growth typical of amplifiers. This means, on the
practical side, that we can compress the pulse and delay the
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propagation distance in regions where high intensities would
become a problem.2! ,

In an amplifier, modulation also occurs during the tran-
sient propagation, and it is convenient to analyze our meth-
od against such a process. If external losses, such as the loss
of conductivity, are considered, then the steady behavior
reflects the competition between the atomic gain and the
external pulse losses. For an atomic line with a spectral hole
that inhibits the on-resonance gain, the combined effect of
pure loss for the on-resonance component and a combined
gain-loss for the off-resonance components will lead to for-
mation of a short null-area pulse, stable and unique.

DYNAMICAL EQUATIONS
The propagating EM pulse is ljepresenfed by
E(z,t) = 6(z, t")exp(iwt’) + c.c., 1)

where ¢’ =t — z/c is the local time, ¢ is the speed of light in
the medium, and w, is the carrier frequency. - 6(z, t’) is the
slowly varying envelope (SVE) of the pulse, in terms of
which one defines a more convenient quantity, the complex
Rabi frequency

Q= 2u6/h, 2)

where u is the atomic dipole amplitude. The time evolution
of the Rabi frequency is governed by the reduced Maxwell
equation

9 _ipp-12g, o
0z c

where B = 2rNw.u?/he, N is the number of atoms per unit of
volume, ¢ is the medium conductivity, and p is the normal-
ized medium polarization. The equations that describe the
TLA system for times shorter than the atomic decay times
are given by the Bloch equations

—id = Ad + iwQ, (4a)
w = Im(Qd), (4b)

where d and w stand for the local time derivates of the SVE
of the atomic dipole d and the atomic inversion w, respec-
tively, of the TLA system, which is characterized by the
atomic frequency w, and the detuning A = w, — w.. The
medium is described by a TLA ensemble characterized by
the inhomogeneous atomic line g(A). In this case the nor-
malized SVE medium polarization is given by

p=(d)= j dg(A)dA. (5)
At a propagation distance z, and after the passing of the
pulse has been completed, we can give a local-frequency-
dependent representation of the field, i.e., the Rabi frequen-
cy 8(4’, z), and of the SVE polarization P(4, z) by taking the
Fourier transform of Eqs. (2) and (4) at a given z. In these
terms we can define the local response function x(4’,2) by

BN, 2) = x (&, 2)Q(&, 2), (6)

where the Fourier variable is A’ = © — w.. On the other
hand, from Eqgs. (4)-(6), and by using the symbolic relation

1 1.
li =P — — imd(A),
em& N - — iwd(A)
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where P is the principal value, we can obtain an expression
for the local response function, which explicitly shows the
atomic inhomogeneous line,

x(&,2) = x'(&, 2) + ix” (4, 2), (7a)
where

X(,2) = 5’ ki <f (2," _AZ)> (7b)
and

B ‘

X" (&% 2) = o) fa, &, z)g(A"). (7c)

We have used the notation
f(&, A, 2) = F(Quw), (7d)

where the symbol F stands for the Fourier transform of the
product of the atomic inversion and the Rabi frequency as a
function of time at a fixed z. Therefore, in general terms, to
obtain f we must still solve Egs. (3) and (4a). Equation (4b)
leads to an integrodifferential equation that is not suitable
for a similar response function analysis. However, we notice
that x”(4A’, z) shows a factorization between (A, A, 2) and
&(4), and this is the leading term in defining the atomic loss
or gain profile, which shall be defined as the imaginary part
of Eq. (7a). Then, despite not knowing the function f explic-
itly, we can modify the gain profile by modifying the atomic
line itself and thus chirping the pulse.

The field propagation equation, given by the reduced
Maxwell Eq. (8), can be rewritten as a function of frequency
by using Egs. (6) and (7):

(éﬂ + '§'>§(A,) z) = iX(A,, z)ﬁ(A,: z)‘ (8)
c 9z

For each frequency, the left-hand side of this equation indi-
cates an exponential decay with a coefficient given by the
pulse external losses, whereas the right-hand side shows the
gain and dispersion caused by the excited atoms. The com-
bined competition between these two contributions will lead

, to the overall output. This process can be expressed in
terms of the total integrated energy

e(z) = j [, 2)]? d¢ (9a)

= i (A’ 2IA7
- j [, 2)]2dA (9b)

and the intensity s a function of frequency )
I(A, z) = [QUA; 2)]2 (10)

From Eq. (8), we can derive the propagation equation that
governs I(A’, z):

(4—’”1 + i)J(A', 2) = =2, &, 2). (D)
c 0z

Another important parameter in pulse propagation is the
area of the pulse A(t, z) at a point z and up to a time ¢. The
propagation of the total area of the pulse is given by Eq. (8)
on resonance. To obtain x(0, z), we use the on-resonance
solutions of Egs. (4) to obtain

w(t’, z,0) = w, cos A(t, z), (12)
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where A(t, 2) is the pulse area elapsed up to a time ¢ and the
propagation distance z, and wy is the atomic inversion initial
condition. In the long-time limit, A(¢, z) will coincide with
(0, 2), and x(0, 2) is given by

= | o [[sin €(0,2) 7
x(O,z)-—[ . ][h“ﬁ(o, - ] (13)
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Fig. 2. A weak pulse is propagated in the HB TLA medium. We
display (a) Q(¢, 2), (b) {(4’, 2)}, and (c) x” (4, z) in the ZGHB and
the SGP cases, the last one in the background. The compression
caused by the spectral hole can be noticed in (a). In (b), the
modulation that originates the compression is clearly distinguished,
as a function of z, in {Q2(4’, z)}. The atomic gain profile is shown in
(c). The pulse area ZGHB null gain caused by the atomic line hole
becomes evident. Notice the hole burn cusps that give rise to the
modulation.
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Fig. 3. The area of a pulse during propagation. We show a small-
initial-area pulse (4o = 0.37) propagating in (a) SGP, (b) HSH, and
(c) ZGHB amplifiers. A large initial area pulse (49 = 2.5) propa-
gating in a ZGHB amplifier is shown in (d). If the spectral hole is
such that g(0) is finite and such that the atomic gain overcomes the

external losses, the pulse area exhibits the behavior predicted by the -

area theorem at the modified atomic gain rate, (a) and (b). The
steady value of the area increases as the depth of the spectral hole
decreases. The curves (c) and (d) show large- and small-area pulses
in a ZGHB amplifier. Both cases show the exponential decay of the
external loss, irrespective of its initial value.
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Fig. 4. Energy of the pulse during the propagation. The curves
shown in this figure correspond to the cases of Fig. 3. If the initial
pulse is weak, it will grow to a steady-state value, (a)-(c). A large
initial-area ZGHB case is drawn in (d). Notice the same energy
steady value for the ZGHB amplifier, (c) and (d).

The substitution of Eq. (13) into Eq. (8) will result in a
variation of the area theorem, where a = 27 Bg(0) is the Beer
coefficient. If the hole burning is on resonance, it will modi-
fy the rate of change of the pulse area. Therefore, if the
spectral hole is such that g(0) = 0, then the atomic gain or
loss of the area is prevented altogether. The steady-pulse
area satisfies the relation

acwo . =
Q,(0) = Bwg A0 Q,(0) (14)

o

obtained from Eqs. (8) and (13). The effect on the resonant
intensity is analogous [Eq. (11)], but that is not the case for
the pulse energy. These combined mechanisms are the ba-
sis of this pulse compression technique.

A qualitative measure of the pulse compression is ob-
tained by observing the behavior of the peak amplitude
amplification, which is measured as the ratio of the squared
area to the pulse energy

_[80,21%,

r(z) @)

(15)
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The increase (decrease) of this parameter is interpreted as
the compression (lengthening) of the pulse. A quantitative
measurement of pulse compression is given by the second
spectral moment,!3

Aﬂa=[ayw%wgamux (16)

In the classical limit that occurs in an absorber and a weak
field (wy = —1), Egs. (7b) and (7c) are real. They are identi-
fied with the dispersive and the absorptive parts of the
dipole reaction field. In this case f(A/, A, z) is just the
Fourier transform of the Rabi frequency, which will cancel
out from Eqs. (7), leading to well-known expressions for
these quantities.2!? The effect of a hole in the inhomogen-
eous atomic line, from Egs. (7), will modify accordingly the
absorptive contribution, slowing down the rate of absorption
of the pulse area. In this limit of HB such that g(0) = 0
(ZGHB), the on-resonance absorption is inhibited. If the
atomic broadening is large enough and the spectral hole is
narrow, results will include the spectral pulse narrowing
predicted by Eberly et al.l® and an increase in the pulse
duration. However, if the atomic broadening is comparable
with the pulse spectral width, it will cause pulse oscillations

r(z)
2.51

o

0 50 100
aoz :

Fig. 5. The parameter r = A2(z)/e(z), for the weak pulse shown in
Figs. 3 and 4, is drawn for the SGP, HSH, and ZGHB amplifiers.
Notice the faster transient growth of the area compared with the
pulse energy in a SGP amplifier. The steady decay is due to the
long-distance stabilization of the area of the pulse while its energy
still increases (Figs. 3 and 4). This process results in the compres-
sion of the pulse by the amplifier.
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Fig. 6. The spectral width of the pulse A, is defined in terms of the
second spectral moment A2 [Eq. (17)]. The curves correspond to
the cases presented in Fig. 3. The transient behavior of A, is to
become larger as the depth of the spectral hole increases. The long-
distance behavior is the opposite. This explains the pulse compres-
sion as a transient phenomenon and the longer Or duration in
comparison with that of the SGP soliton.
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Fig. 7. Long-distance behavior of the propagating pulse in the
SGP and ZGHB amplifiers. The SGP amplifier modulation gives
place to the generation of a steady pulse of nonzero area Ag, whereas
a ZGHB amplifier has one with null area. The modulus of the
spectrum of the pulse in both cases is drawn in (b) and (c). The
'SGP case shows a wide spectral broadening, but the amplification
iself-modulation is negligible. In the ZGHB case, the spectral
‘broadening is limited, with a hole due to the null area. A numerical
.determination of the chirping frequencies A’;, is given in (d). A’pis
determined as the frequencies where the maxima of {Q(4’, z)} occurs.
The symmetry of the spectra has been used to show only the curve
for positive frequencies. Modulation is slow to start in a SGP
amplifier, but thereafter it will grow to a vigorous pace. In the
ZGHB amplifier, early modulation is strong and will quickly reach a
near-steady value, surpassed by the SGP value at longer distances.
The unequal changes of slope are due to changes in the form of Q(4’,
z). The SGP modulation is transient and will eventually disappear.
Note the difference in the scales in (b) and (c).

J. J. Sanchez-Mondragon and G. E. Torres-Cisneros

similar to those caused by anomalous absorption but for a
nonzero-area pulse. On the dispersive part, the influence is
subtler, since a frequency averaging will be carried out.

In the case of an amplifier without such a spectral hole
[one with a standard gain profile (SGP)], there is no analog
for the approximation used for the absorber. SGP propaga-
tion is characterized by an initial monotonic growth, when
the field is small, soon to be accompanied by a simultaneous
modulation and compression of the pulse.%1%20 The final
stage, which corresponds to a stable pulse of definite area, is
known from numerical evidence in the general case.%!¢ This
behavior is discussed in the following section and is shown in
the backgrounds of Figs. 2-7, with which we will make the
comparison for the case of a spectral hole in the inhomogen-
eous atomic line.

PROPAGATION IN AN AMPLIFIER WITH A
SPECTRAL HOLE

The aim of this section is to show the pulse compression by
hole burning in the gain profile, its range of validity, and the
efficiency of the method compared with the one in a holeless
(SGP) amplifier. Against this we will compare two cases of
amplifiers with a spectral hole (HB): one (ZGHB) with a
spectral hole that makes the gain profile null on resonance
and another one (HSH) that has a spectral hole that is half
the on-resonance amplitude of the SGP. We will compare
the transient behavior, the area, the energy, the duration,
and the modulation of the pulse in each case. We will
conclude with a discussion of the steady pulse of such ampli-
fiers. The relevant results are.obtained by numerically inte-
grating Eqgs. (3) and (4) and by using fast-Fourier-transform
subroutines to obtain Eq. (6). The results are given in a
graphical sequence, in which the propagation distance z has
been measured in the SGP Beer length «.

The spectral hole in the inhomogeneous atomic line shape
spoils the on-resonance contribution from the TLA medium
and creates two maxima cusps on the gain profile. They will
behave as chirping frequencies and cause an early pulse
modulation. Their dependence on the propagation distance
is small,?0 and their permanence depends on the relative
spectral hole width. Such chirping will be eventually over-
come by the natural amplification modulation, where this
technique will lose its efficiency. The pulse area will be
critically affected, slowing down its growth, and the numeri-
cal evidence indicates that it is unable to reach stability in
large areas if external losses are absent.®!® If they are
present, they will compete with the on-resonance gain.
When this is inhibited by a ZGHB gain, the pulse area decay
will set and will result in a stable zero-area pulse [Eq. (14)].
If the spectral hole has a finite depth, the problem is analo-
gous to that of the SGP amplifier, and the numerical evi-
dence shows that a steady pulse is of the SGP soliton type.
The values of the steady-pulse energy es and area Ag get
smaller as g(0) does, i.e., as the spectral hole becomes deeper.
In the ZGHB amplifier limit, Ag must be null [Eqs. (14)], and
es must be unique for any value of the initial area. From
this and from numerical evidence, the uniqueness of the 0x
pulse is concluded.

The transient behavior of ZGHB and SGP amplifiers is
shown in Fig. 2. The comparison between the two pulses is
established in their temporal display and their spectrum and
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atomic gain [Eq. (7c)]. In this regime, the pulse compres-
sion is clearly noticeable, and it is due to the different effects
of the two amplifiers on the pulse. The SGP amplifier
essentially amplifies the pulse, whereas the ZGHB amplifier
broadens spectrally, modulates, and holds down the area of
the pulse. In the spectrum, we can see the two cusps that
will spectrally broaden and modulate the pulse in the ZGHB
amplifier. This modulation is not the one that will occur
later in an SGP amplifier.

The area and the energy of the pulse are shown in Figs. 3
and 4, respectively. If the consideration of a external loss
(conductivity) is made, then the area in a ZGHB amplifier
has an exponential decay at the loss rate of the decay. On
the other hand, for a HSH amplifier, atomic gain will set
until a balance is reached between the atomic gain and the
external loss. The behavior of the energy [Eq. (9)] follows
the more traditional pattern for an amplifier and has a
monotonic growth until it reaches a nonzero limiting value
es, which decreases as the depth of the spectral hole in-
creases.

The study of the pulse duration as a function of the propa-
gation distance can be given by the ratio r(z), which relates
the area and the energy of the pulse with the spectral second
moment A2 Both of them are defined in Egs. (15) and (16),
and they are displayed in Figs. 5 and 6, respectively. The
curves correspond to SGP, HSH, and ZGHB amplifiers for
each of the figures. If the net effects of a spectral hole on the
area are losses, the parameter r(z) is monotonically decreas-
ing toward its steady value. In the SGP case, there is a
transient growth before it also settles into a monotonic de-
creasing behavior, when the area gainisnull. A quantitative
measurement of the pulse duration is given by the spectral
width of the pulse A,. This will increase if there is a spectral
hole, and it is monotonically increasing up to a steady value
in the case of a ZGBH amplifier. In a SGP amplifier, it will
exhibit a transitory decrease before it grows to a value that is
the greatest of the steady values for HB amplifiers.

These results can be interpreted as an early amplification
and a poor increase of the energy content of the pulse for a
SGP amplifier, whereas in a HB amplifier the process is the
opposite. This transient behavior will hold until the pulse
tends to stabilize in a SGP amplifier, at which point this
process will be reversed. Furthermore, the steady pulse in
each amplifier will fix the value of such a limiting value for
A,. In conclusion, the pulse-compression effect in a HB
amplifier is a transient effect that increases its effectiveness
as the depth of the spectral hole increases.

The long-distance pulse propagation study will provide
the clues at this reversal of the pulse compression. InaSGP
amplifier, the initial amplification gives way to pulse modu-
lation and thereafter to an unchirped steady pulse of finite
area. On the other hand, a ZGHB amplifier avoids the
amplification stage and produces a 0w pulse. In Fig. 7 we
show the temporal display of the pulse for both amplifiers,
their spectra, and the frequencies at which each spectrum
reaches a maximum. These frequencies tell us about the
modulation frequencies acting on the pulse. Such modula-
tion was noticed early for a ZGHB amplifier. It persists and
is the origin of the Or steady pulse. In the case of a SGP
amplifier, the modulation is a transient effect that does not
occur at early times but is far more pronounced than in the
case mentioned before [Fig. 7(c)]. However, in this nearly
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steady domain, the SGP broadening of the range of frequen-
cies where amplification occurs is poor. In a SGP amplifier,
the steady-pulse process is more efficient and results in a
SGP steady pulse shorter than the ZGHB steady pulse or
any other HB steady pulse.

At this point we should stress that for an amplifier the
distance at which steady pulse occurs is quite large®® and
that, although pulse compression is a transient mechanism,
it will hold for the typical experimental propagation dis-
tances. At very long distances, in the steady regime, the Ox
pulse generated for a ZGHB amplifier is one with large
partial areas. Therefore it is a pulse that is not generated by
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Fig.8. HB by propagation. (a) A not very weak long pulse (¢, 2)
running ahead of a short pulse Q(¢/, z) creates a hole burn on the
atomic gain profile. (b) The pulse spectrum shows amplification
for the long pulse and shows modulation and an inhibited area
growth for the short one. (c¢) The gain profile for each one shows
only gain for the long pulse and a mixed gain-loss for the short one.
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anomalous absorption? or a superposition of solitons, is not
a modulated one, and has not been theoretically predicted
until now.24

The spoiling of the absorption coefficient «, caused by the
spectral hole, will have an effect on other features associated
with pulse propagation in amplifiers, such as super-
radiance, amplifier damage, and self-focusing. The relation
between superradiance and propagation is expressed by the
Friedberg-Hartmann relation??

oL = 2780) an
™™~

where L is the length of the amplifier bar and 7 is the
superradiant decay rate. When oL is small, absorption is
negligible, and superradiance will not occur. A measure-
ment of the tendency of the beam to break up the amplifier
rod is given by the B integral defined by25

= Iy f Idz, (18)
A
and that limits the diameter d, of the rod. In this case, v =
47 X 1077 (no/n0c), where 73 is the nonlinear refractive index.
If the amplification were exponential, it will be governed by
Eq. (13), which through the atomic inversion is proportional
to the amplifier pumping; therefore B is proportional to d,.
However, Eq. (13) is also proportional to g(0), and because of
the spectral hole this reduces or removes the dependence on
dq, making B smaller. On the other hand, phase modulation
and propagation transversal effects are associated with non-
linearities.!® A transversal effect of special importance is
the coherent on-resonance self-focusing, which has different
features than its off-resonance analog?! that occurs for 5 <
al < 30.26 Because of the spectral hole, we reduce its effect
or avoid it by spoiling the amplification. A numerical analy-
sis of this problem and its comparison with methods in
which a defocuser medium is introduced in order to avoid
self-focusing? will be presented in a future publication.
Finally, we discuss a procedure to generate a spectral hole
during propagation. This consists of running a long pulse
ahead of the short pulse to be compressed. In Fig. 8(a) we
exhibit the temporal display of the pulses. In Figs. 8(b) and
8(c) we show their spectra and their atomic gain for four
propagation distances within the TLA amplifier. We can
observe that the first (long) pulse tends to be exponentially
amplified by the medium. This amplification causes a de-
pletion in the population inversion of the near-resonant at-
oms, and the second (short) pulse sees an amplificating me-
dium with an inhibited near-resonant gain, i.e., with a spec-
tral gain profile with a hole. The long pulse cannot be
arbitrarily weak if it is expected to be efficient in burning the
spectral hole. This can be easily explained in terms of the
area theorem, which states that for very weak or large pulses
the gain is poor. Experimental evidence of this effect has
been observed.??

CONCLUSIONS

Pulse compression by an inhomogeneous hole burning is a
transient coherent-pulse-propagation phenomenon. Its
range of applicability is well within the domain of experi-
mental feasibility. The spectral hole in the inhomogeneous
broad line inhibits the growth of the area of a pulse propa-
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gating in an amplifier. On the other hand, the hole will
cause reshaping of the spectral distribution of the pulse,
which will become spectrally broader and temporally
shorter. This process is caused by the spectral hole modula-
tion, which will eventually be overcome by the inhomogen-
eous medium pulse-amplification self-modulation Ag 5 0.
The validity of these regimes is directly associated with the
width of the spectral hole, but the distinction is not obvious,
since there is not a unique connection between the spectral
hole and the dispersive and absorptive response functions.
In the HB case with Ag = 0, those frequencies persist and
give origin to the O pulse.

Spectral holes of smaller amplitudes are more appropriate
than those in the ZGHB case for use in comparisons with
standard pulse-compression techniques. To compare this
method and the ones based on chirping by nonlinear materi-
als, it is necessary to consider the ease of creating the re-
quired spectral hole against the availability of appropriate
nonlinear materials. In this case, high intensity and near
resonance are extremely restrictive on the availability of the
suitable material. The independence of the method from
nonlinear materials but not from the amplifier itself lends it
a greater transportability and experimental control. This
method also suggests an alternative explanation for the self-
chirped output in mode-locked lasers?! or its use as a first
stage of pulse compression by a grating pair. However, if
the minimum of the spectral hole is null or negative, as is the
case when the inversion is negative near the resonant fre-
quencies, it will strongly reinforce the features observed due
to the competition of amplification off resonance and ab-
sorption near resonance for the ZGHB amplifier.

The ZGHB steady pulse is quite interesting by itself. Itis
a Ow pulse of large partial areas. Because of its large partial
areas and its zero total area, it is suitable to become a steady
O pulse in an absorber, without the typical problems of
stability or anomalous absorption.

ACKNOWLEDGMENTS

J. J. Sanchez-Mondragon would like to thank J. H. Eberly
for enlightening discussions and the support to carry on a
long-standing collaboration. Special thanks are due to B.
Griffin for her hospitality. This work was partially support-
ed by the Consejo Nacional de Ciencia y Tecnologia. J. J.
Sanchez-Mondragon was commissioned by Centro de In-
strumentos, Universidad Nacional Autonoma de Mexico.

REFERENCES

1. A. Laubereau, An Introduction to Picosecond Spectroscopy.
Advances in Laser Spectroscopy. Nato ASI Series B, Physics,
F. T. Arechi, F. Strumia, H. Walter, eds. (Plenum, New York,
1981), Vol. 95, p. 339.

2. D. H. Auston, “Picosecond nonlinear optics,” in Ultrashort
Light Pulses, Vol. 18 of Topics in Applied Physics, S. L. Sha-
piro, ed. (Springer-Verlag, Berlin, 1984), p. 123.

3. B. Wilhelmi, W. Rudolph, E. Dopel, and W. Dietel, Opt. Acta 32,
1175 (1985).

4. E. G. Arthurs, D. J. Bradley, and A. G. Roddie, Appl. Phys. 19,
480 (1971).

5. R. C. Greenshow and A. J. Schmidt, Adv. Quantum Electron. 2,
157 (1974); D. von der Linde, Appl. Phys. 2, 281 (1973) [Reprint-
ed in Physics of Quantum Electronics, S. F. Jacobs, M. Sargent
II1, M. O. Scully, and C. T. Walker, eds. (Addison-Wesley,
Reading, Mass., 1975), Vol. II, p. 351]. A large number of the



J. J. Sanchez-Mondragon and G. E. Torres-Cisneros

10.
11.
12.

13.
14.

basic papers on mode-locking techniques are listed in these
papers.

. M. d. Colles, Appl. Phys. Lett. 19, 23 (1971).
. E.P.Ippen and C. V. Shank, Appl. Phys. Lett. 27,488 (1975); M.

A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14 (1969); D.
F. Holshauser; H. Von Foerster, and G. L. Clark, J. Opt. Soc.
Am. .51, 1360 (1961); E. O. Ammann, J. Opt. Soc. Am. 56, 1081
(1966).

. 'T. K. Gustafson, J. P. Taran, H. A. Hans, J. R. Lifsitz, and P.-

Kelly, Phys. Rev. 177, 306 (1969); R. A. Fisher, P. L. Kelley, and
T. K. Gustafson, Appl. Phys. Lett, 14, 140 (1969); D. Grisch-
kowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); A.
Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); H.
Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys. Rev. Lett.
47, 910 (1981); J. A. Giordmaine, M. A. Duguay, and J. W.
Hansen, IEEE J. Quantum Electron, GE-4, 252 (1968); C. V.
Shank, R. L. Fork, R. Yen, and R. H. Stolen, Appl. Phys. Lett.
40, 761 (1982); B. Nikolaus and D. Grischkowsky, Appl. Phys.
Lett. 42, 1 (1983); O. Svelto, in Progress in Optics XII, E. Wolf,
ed. (North-Holland, Amsterdam, 1974), p. 3; R. E. Slusher, in
Progress in Optics X1I, E. Wolf, ed. (North-Holland, Amster-
dam, 1974), p. 53.

. G.L.Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971); A. Icsevgi and W.

E. Lamb, Jr., Phys. Rev. 185, 517 (1969).

L. Allen and J. H. Eberly, Optical Resonance and Two Level
Atoms (Wiley, New York, 1975).

N. Skribanowitz and B. Kopainsky, Appl. Phys. Lett. 27, 490
(1975).

R. E. Slusher and H. M. Gibbs, Phys. Rev. A 10, 1634 (1972); 6,
1255 (1968).

R. Michalska-Trautman, Phys. Rev. A 22, 2738 (1980).

J. J. Sanchez-Mondragon and J. Delgado-Saldivar, Rev. Mex.
Fis. 31, 623 (1985).

15.

16.

17.

18.
19.

20.
. Jack Marburger, Prog. Quantum Electron. 4, 35 (1975); P. L.

22.
23.

24,

25.

26.

27.

Vol. 4, No. 1/January 1987/J. Opt. Soc. Am. B 71

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlin-
son, Opt. Lett. 8, 289 (1983).

E. L. Gieszelman, Tech. Rep. No. 80 (Optical Sciences Center,
University of Arizona, Tucson, Ariz., 1973); E. L. Gieszelman, J.
Opt. Soc. Am. 61, 659 (1971).

R. A. Fisher and P. L. Kelley, Appl. Phys. Lett. 14,140 (1969); R.
A.Fisher and J. A. Fleck, Jr., Appl. Phys. Lett. 15; 287 (1969); E.
G. Arthurs, D. J. Bradley, arid A. G. Roddie, Appl. Phys. Lett.
19, 480 (1971). ,

L. Matulic and J. H. Eberly, Phys. Rev. A 6, 822 (1972).

J. H. Eberly, S. R. Hartmann, and A. Szabo, Phys. Rev. A 23,
2502 (1981).

J. C. Diels and E. L. Hahn, Phys. Rev. A 8, 1084 (1973).

Kelley, Phys. Rev. Lett. 15, 1005 (1965); R. Y. Chiao, E. Gar-
mire, and C. H. Townes, Phys. Rev. Lett. 15, 479 (1964); E.
Garmire, R. Y. Chiao, and C. H. Townes, Phys. Rev. Lett. 16,
347 (1966); C. C. Wang, Phys. Rev. Lett. 9, 344 (1966); P. Kaw,
Appl. Phys. Lett. 15, 16 (1969).

E. B. Treacy, Phys. Lett. A 28, 34 (1968).

H. P. Grieneisen, J. Goldhar, N. A. Kurnit, A. Javan, and H. R.
Schlossberg, Appl. Phys. Lett. 21, 559 (1972); J. E. Rothenberg,
G. Grischkowsky, and A. Balant, Phys. Rev. Lett. 53, 552 (1984).
D. J. Kaup and L. R. Scacca, J. Opt. Soc. Ain. 70, 224 (1980); F.
A. Hopf, G. L. Lamb, Jr., C. K. Rhodes, and M. O. Scully, Phys.
Rev. A 3,758 (1971); F. A. Hopf and S. Shakir, Phys. Rev. A 19,
243 (1979).

H. Motz, The Physics of Laser Fusion (Academic, New York,
1979).

H. M. Gibbs, B. Bolger, F. P. Mattar, M. C. Newstein, G. For-
ster, and P. E. Toschik, Phys. Rev. Lett. 37, 1743 (1976).

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Phys. Rev. A 13,

11095 (1976).



