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We present a numerical study of the non-steady-state pulse propagation in a resonant inhomogeneously broad-
ened absorber embedded in a dielectric medium with a Kerr-type nonlinearity. We find that the individual
atomic dipoles are dephased and that their evolution depends on their detunings. We think that this is the rea-
son for small energy losses that prevent the pulse from attaining a truly steady-state nature. We discuss the
implications of this result in relation to previous studies. Our results point to the existence of near-steady-
state Kerr pulses, similar to the ideal solitons.

1. INTRODUCTION

Steady-state pulses are an expected feature of most non-
linear propagation problems because of the ability of the
nonlinearities to cancel out the linear dispersion and
hence the pulse absorption. This feature is common to
pulse propagation in passive as well as resonant media. In
each case there is a theoretical and experimental frame-
work that predicts the existence of solitons. However,
the problem of propagation in a medium with both nonlin-
earities is a different matter. Steady-state propagation in
this setting has been suspected for a long time, but the
experimental evidence is insufficient and limited, while
the development of its theory is hampered by an inability
to apply previously successful analytic methods.

Within this class of problems is pulse propagation in
the presence of the optical Kerr effect, a nonlinear and
nonresonant phenomenon that has proved to be of great
interest in theoretical and experimental research on pulse
propagation through different absorbing and amplifying
media. The Kerr effect is a passive nonlinearity that
turns out to be a source of, among other things, phase
modulation or chirping and the existence of stationary
pulses in nonresonant media like optical fibers. As first
shown by Hasegawa and Tappert,' the phase modulation
produced by the Kerr nonlinearity may counteract the dis-
persive effects inherent in the fiber, permitting the propa-
gation through the fiber of undistorted light pulses.
Among the most interesting practical applications of this
fact are the compression of pulses to temporal widths of
only a few femtoseconds2 and the elegant proposal of a
so-called soliton laser.3

On the other hand, as first shown by Eberly and
Matulic,4'5 the inclusion of the Kerr effect in a resonant
medium with a homogeneously broadened atomic line
leads to the possibility of pulse propagation of self-induced
transparency- (SIT-) type pulses.6 However, we, as well as
some other workers,7 were unable to obtain a self-consistent
analytic solution for the more realistic case of an inhomo-
geneously broadened atomic line in which the distribution
of transition frequencies is comparable to or larger than

the spectral width of the pulse. We have recently pub-
lished some numerical results for the steady-state pulse
propagation in broad-line absorbers in the presence of a
Kerr nonlinearity.8 There, we assumed the existence of
the steady-state pulses in the presence of a Kerr nonlin-
earity and solved numerically the corresponding steady-
state equations. Then we showed that such pulses exist,
that they possess an asymmetric chirp, and that they are
not factorable. We ascribed to this last-named fact the
impossibility of finding analytic solutions to this problem.

In the present paper we abandon the a priori assump-
tion of the existence of steady-state solutions and examine
the problem from a more physically realistic point of view;
i.e., we study the way in which the pulse actually propa-
gates in the resonant Kerr medium and whether it even-
tually evolves toward the steady state. One of the most
important results that we have found is that the Kerr
pulse never achieves a truly steady state. Its area seems
to remain stable, but its energy shows a small but unmis-
takable decay. This fact disqualifies the Kerr pulse from
being considered a true soliton. We have found that this
small loss of energy is associated with the behavior of
the microscopic absorptive components of the atomic po-
larization. They show a quite pronounced dephasing; i.e.,
their temporal evolution is strongly dependent on detun-
ing. We think that this is the reason for the energy loss of
the pulse.

As the Kerr nonlinearity or the atomic linewidth is de-
creased in magnitude, the dephasing of the absorptive
components of the atomic polarization tends to disappear,
so that at the limit of no Kerr nonlinearity and no Doppler
broadening we recover the ideal soliton solutions.

Moreover, we think that the dephasing of the atomic
polarizations is the reason for the breakdown of the fac-
torization assumption. Since this assumption seems to
be the only way to arrive at stable, shape-preserving, and
energy-conserving pulses, we conclude not only that the
factorization assumption is a mathematical ansatz but
that it has an important physical content; that is, this fac-
torability condition is intimately related to the existence
of ideal solitons and ideal pulse trains.
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In our theory the departure of a Kerr pulse from an
ideal soliton is so small that we are inclined to think of it
as a quasi-steady-state structure, which a simple experi-
ment would not be able to distinguish easily from a truly
steady-state pulse.

2. NON-STEADY-STATE
PULSE-MEDIUM DYNAMICS
In this section we present briefly the basic equations that
govern the interaction between a light pulse and the reso-
nant and nonresonant media in which it propagates. We
describe this interaction in both the temporal and the fre-
quency domains.

We consider a laser pulse with carrier angular frequency
COL propagating through two-level inhomogeneously broad-
ened resonant atoms embedded in a dielectric character-
ized by a Kerr-type nonlinearity. In the usual slowly
varying envelope and phase approximation the pulse is
given by

E(t, z) = (t, z)exp[i(kz - LLt)] + c.c., (1)

where %(t, z) is the slowly varying complex envelope of the
electric field and k is its wave number. The interaction
between the pulse and the medium can be described by
the following set of partial integrodifferential equations,
which we will refer to as the Kerr optical Bloch-Maxwell
equations:

ap/at = i(Ap + Qiw),

aw/at = Im(Qp*),

(a/az + a/coat)fl = -i(B(p) + CKfi 2fl),

where p = u + iv is the complex envelope of the atomic
polarization, w is the atomic inversion, A = W - coL is the
detuning of an individual atom's transition frequency to
from the laser's frequency &oL, and co = /71o is the velocity
of light in the dielectric. The transition frequencies are
assumed to be distributed about the central frequency WL,
and their distribution is assumed to be described by a nor-
malized atomic line-shape function g(w - WL) = g(A),
whose bandwidth (FWHM) is denoted by 1/T2*. Finally,
the quantity is referred to as the complex Rabi fre-
quency and is defined by

Q(t, z) = K%(t, z) = (2d/h)%(t, z), (3)

where d is the matrix element of the atomic dipole. The
definition given in Eq. (3) is more suitable for numerical
calculations than an equivalent definition more fre-
quently used in analytic studies of pulse propagation5 :

fl(t, z) = (t, z)exp(i'), (4a)

where

q) = Akz - AOLt + 0(t, Z)* (4b)

Here l and are the real amplitude and the phase modu-
lation of Ql, respectively. In Eq. (4b) Ak and AWL are the
frequency and the wave-number pullings of the pulse, and
they are defined as the linear terms in z and t of the phase
modulation k(t, z) of fQ(t, z).

In Eq. (2c) the constant B, with dimensions in inverse
centimeter-seconds, depends on the medium and is given

by B = 2a2
/7o0c = a/27rg(0), where -qo is the linear part of

the index of refraction of the passive dielectric, c is the
velocity of light in vacuum, and a2 = (7r/2)Nh WLK

2, in
which N is the number of active atoms per unit volume.
The quantity a-' is sometimes referred to as the coopera-
tive time of the active medium, and a-' is the Beer length.
We will refer to B as the propagation constant.

The second constant that appears in Eq. (2c), with di-
mensions in (inverse centimeters) x (squared seconds), is
given by CK = f3CWL/CK , where 6 is the Kerr constant of
the background dielectric, which defines its nonlinear
index of refraction through the relation

?7 = _70(1 + /3%2). (5)

We will call the constant CK simply the Kerr constant.
Finally, the angle brackets in Eq. (2c) represent the av-

eraging of the quantity enclosed within them with respect
to the atomic line g(A).

Equation (2c) can be simplified if we make the following
change of independent variables:

Z' = z, t' = t - z/co. (6)

The complex Rabi frequency 0 of Eqs. (4) transforms into

fl(t z) = f1(t' z)exp{i[Ak'z - ALt + (t' z)]}, (7a)

where

A L A L A,/ I 71-\
(2a) UK = LI - U/GO I UD)

(2b) is the wave-vector pulling referred to the (z, t') frame.
(2c) From Eqs. (6) it follows that

a/az + a/coat = a/az', (8)

and the Maxwell equation for (t', z) [Eq. (2c)] can now be
written as

a/az = -i(B(p) + CKf i12f) (9)

We have just outlined the descriptions of the pulse-
medium interaction in the time domain. There is, as is
well known, a fully equivalent description of this interac-
tion in the frequency domain that is, in some instances,
much more convenient to use. Therefore we now briefly
summarize the description of the pulse-medium interac-
tion in the frequency domain.9

We start by writing the temporal Fourier transform of
the Rabi complex frequency fl(t', z) as

fl(A', z) = fZ(t' z)exp(-it') dt', (10)

which we will occasionally represent by f[Q(t', z)]. In
Eq. (10) A' = &' - WL are the Fourier-transform frequen-
cies of Q(t', z) centered at the carrier frequency of the
pulse, WL. Multiplying Eq. (9) by exp(-iA't') and inte-
grating over t', we arrive at the counterpart of the Max-
well equation in the frequency domain:

afl(A', z)/az = iX(A', Z)(A', Z). (11)

We will refer to the quantity X(A', z) as the complex
response function or the local susceptibility, which is
given by
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X(', Z) = x'(Z',z) + ix"(', Z)

= -f(B(p) + CKI I 2 I f)/f. (12)

Equation (11) is, in most cases, a complicated nonlinear
differential equation and must be solved numerically.

In analytic studies of pulse propagation in the absence of
a Kerr or similar nonlinearities the concept of pulse area
has proved useful.6 The well-known McCall-Hahn area
theorem describes the general features of an unchirped
pulse as it propagates through a resonant medium. In
order to accommodate chirping, which is always present
when there is a Kerr or similar nonlinearities in the sys-
tem, we generalize their concept of pulse area by estab-
lishing the definition

A(z) = f (t' z)dt' (13)

It is easy to show that A(z) = I(O, z)I, i.e., that the area of
the pulse is equal to the absolute value of the Fourier
transform of the pulse's complex envelope at resonance.'0

Equation (11) with A' = 0 and the definition in Eq. (13)
lead to the equation for the space evolution of the
area A(z):

aA(z)/az = -"(0, z)A(z), (14)

which is the analog of the equation obtained by McCall
and Hahn.6

The differential equation for the area [Eq. (14)] can be
solved analytically for weak fields where (p) is a linear
function of fl and X(A', z) is independent of z.' 0 For
strong fields it was solved by McCall and Hahn but only
with CK = 0, which led them to the discovery of the self-
induced transparency.6

It can be shown (for the details see Appendix A) that
for the 27r hyperbolic secant pulses the susceptibility is
given by

However, even in this case, it is possible to obtain some
useful analytic results.

Let us represent the local susceptibility in a Kerr
medium by XK(A', Z). It is made up of two parts. The
first part is produced by the two-level atom (TLA) reso-
nant polarization and is given by

XTLA(A, Z) = Bf[(p(A, t, z))]/1(A', z) . (17)

The second part of the susceptibility XK(A', Z) is given by

(18)

and is a result of the off-resonance polarization due to the
Kerr nonlinearity. We will term it the Kerr susceptibil-
ity. Thus

XK(A', Z) = XTLA(A, Z) + XN(A, Z) . (19)

In general, this susceptibility must be computed numeri-
cally. However, at the beginning of the propagation,
when the pulse is not yet fully coupled with the resonant
and nonresonant media, we can assume that its shape is
approximately the same as that of the injected pulse.
Therefore fQ(t, z) in Eqs. (17) and (18) are known quanti-
ties, and we can obtain some useful analytic results. If
we make a further simplifying assumption that the initial
pulse is of a hyperbolic secant shape given by fl(t', z) =
(2/T)sech(T'/T), where T' = t' - z/V, then the resonant
susceptibility is given by XTLA(A', 0) = A'-

The evaluation of the nonresonant susceptibility is a bit
more involved. The details of this calculation are given
in Appendix A, from which we quote the final results:

XN(A, O) = CK(2 /2 + 2' 2).

Adding the TLA susceptibility and the nonresonant sus-
ceptibility, we obtain the total susceptibility in the pres-
ence of the Kerr nonlinearity for short propagation
distances, which, after some minor algebra, can be written
in the form

Xo(A, Z) = Xo'(A', Z) = a,

Xo'(A',z) = 0,

(15a)

(15b)

confirming that the SIT pulses are indeed energy con-
serving as well as shape preserving. In Eqs. (15) the sub-
script zero reminds us that CK = 0. Moreover, the pulse
delay 8 = 1V, - 1/co is given by 6 = Br 2(F(A)), where V is
the velocity of the soliton, is its temporal width, and B
is the propagation constant. The quantity F(A) is the fac-
torization response function defined by the factorization
relation

v(A', t - z/V8) = F(A)v(, t - z/V.), (16)

and (F(A)) is its average over the Doppler broadening of
the atomic line. In order to arrive at the above expression
for , we used the relation vCT(F) = 1, established in the
steady-state theory of solitons.8 With X" = 0 for all A'
and with V < c these pulses are truly area preserving
and energy conserving.

The propagation of intense pulses in a Kerr medium
is much more complex, and, as far as we know, no analytic
solutions for the local susceptibility have been found in
this case. In general, it must be computed numerically.

XK(A, 0) = XK(A , 0) + 2CK(' V) (20)

Equation (20) represents a parabola in A' having its vertex
at a point with coordinates

AV = -3/4CK,

XK(IO) = Ak' + A V,/2,

(20a)

(20b)

where Ak' = CKfl O2 /2. This constant term Ak', having
dimensions of inverse centimeters, ought to be identified
with a wave-number pulling in Eq. (4b).

The linear term in A' in XK(A, 0) has its origin in
XTLA(A', 0) and defines the SIT soliton's speed. Equa-
tion (20) is of particular importance because it is well veri-
fied by our numerical calculations (Section 3).

Finally, for short propagation distances Eq. (11) becomes

afl(A', z)/aZ = iXK(A, 0)(W, Z), (21)

which can be readily solved to give

fl(A',z) = f(A',0)exp{i[Ak' - 4CKA,4' + 2CKS']z}.
(22)

Taking the inverse transform of Eq. (22), we obtain the

Matulic et al.

' J2r1)/fi (Al, Z)
XI(A', Z) = CKf(I 0



Vol. 8, No. 6/June 1991/J. Opt. Soc. Am. B 1279
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Fig. 1. Spatial evolution of the pulse area. The solid curves rep-
resent pulses in the presence of a Kerr nonlinearity, and the open
circles correspond to pulses in the absence of a Kerr nonlinearity.
The input pulses have Gaussian profiles with a parameterized
time width = 3/2; they are unchirped, and their initial areas
are indicated. The inhomogeneous linewidth of the resonant
atoms is T/T2' = 9/2, while the Kerr parameter of the background
dielectric is CK = 0.01.

I
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Fig. 2. Relative energy as a function of the propagation distance
for a non-Kerr case (CK = 0) and a Kerr case (CK = 0.01) in an
inhomogeneous resonant medium. The input pulses have 27r hy-
perbolic secant profiles with X = 3/2, and the width of the inho-
mogeneous line is 9/2, the same as that used in Fig. 1.

The smallness of the Kerr constant CK (Ref. 15) makes
some numerical results uncertain, so that we do not always
rely on the study of the pulse propagation in the temporal
domain but also exploit the alternative description in the
frequency domain in order to obtain important character-
istics of these pulses. Particularly useful in this respect
is the notion of local susceptibility X(A', z) introduced in
Section 2. In that section it was seen how x(A', z) pro-
vides a simple and straightforward criterion for deciding
whether a pulse has achieved a steady-state propagation.
Only if X(A', z) is a real and linear function of A' is the
pulse shape preserving and energy conserving, the proto-
type being a pure soliton of the McCall-Hahn SIT.

However, we start our investigation by solving numeri-
cally the propagation equations in the time domain
[Eqs. (2)]. The initial pulses have temporal widths ' = 3/2
in arbitrary units; all the other temporal and frequency
units will be referred to this value.

Figure 1 shows the variation of the area A(z) with the
penetration distance for pulses traveling in inhomoge-

3.5 aZ =24

3.5T

0
3.5.

temporal description of the pulse:

- I IOr t -z / i2
f(t', z) = lo QKz ech( ) ®p exp( e,

2 4--~ex~ \ 7 (8CKz/
(23)

where 0 is the convolution operator. 012 This pulse would
be area preserving and energy conserving if it could main-
tain the same form during the subsequent propagation.
Unfortunately, we were unable to follow this propagation
analytically, and therefore we had to resort to numerical
calculation, the results of which we report in Section 3.13

3. NUMERICAL RESULTS
There are extensive numerical studies of resonant pulse
propagation in Kerr-free inhomogeneous broadened media
and similar systems but only a few of the case when the
Kerr nonlinearity is present.9 "4 In this section we report
the results of our numerical calculations on the propaga-
tion of Kerr pulses in media with broad-line resonant
atoms. Our attention will focus particularly on the ques-
tion of whether these pulses can attain a steady-state con-
dition, i.e., whether they can be classified as ideal solitons.
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Fig. 3. Temporal behavior of the amplitude (solid curves) and the
chirping (dotted curves) of the pulse as it propagates in the pres-
ence of a Kerr nonlinearity of CK = 0.01. The input Gaussian
pulse has an area of 1.8ir, while the other parameters of this nu-
merical simulation are the same as those used in Fig. 1.
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chirp reminiscent of the chirp obtained in steady-state
theory.8 We also observe a small loss of the pulse ampli-
tude and an increase of its width. The pulse evolves into a
modulated quasi-steady-state entity with the expected
reshaping process on its leading edge. Therefore the pulse
in this Kerr quasi-steady-state regime is chirped, and it
has a constant area but spreads out during the propagation.

We obtain further details for this quasi-steady-state
pulse and the role played by the TLA's and their Doppler
broadening from the frequency records of the pulse. As
far as we know, no reasonable analytic approximations are
available for studying the pulse behavior at large propaga-
tion distances; consequently, we explore this region nu-

IQ(A',)I - IQ(Al'O)I

01
-3 0 IN 3

Fig. 4. Modulus of the Fourier transform of the pulse taken at
three penetration distances within a resonant medium with a
Kerr nonlinearity of CK = 0.01. The initial 27r hyperbolic secant
pulses are identical with those used in Fig. 2, but the inhomoge-
neous atomic line is sharp (/T2 = 3/20) for the solid curve and is
broad (/T2 = 9/2) for the dashed curve.

neously broadened media with and without Kerr nonlin-
earities. The injected pulses are unchirped and have
Gaussian profiles, with areas of 0.87r and 1.27r located on
the 07r and 2 branches, respectively, of the McCall-Hahn
area curves.6 The area curves for the non-Kerr and Kerr
cases are hardly distinguishable. In particular, the upper
curves indicate that the areas of both pulses evolve toward
the 27r value. It would be inappropriate to conclude,
though, that the preservation of the area of the Kerr pulse
implies that its energy is also conserved. That this, in
fact, is not the case can be seen from Fig. 2, in which we
have plotted the relative energy e(z) = E(z)/E(O) for an
initial hyperbolic secant pulse of area 27r entering either a
Kerr medium or a Kerr-free medium. The horizontal line
corresponds to the non-Kerr case and indicates that the
energy of this pulse remains strictly constant. The curve
corresponds to a Kerr pulse, and it clearly shows that it
loses energy, although the loss is rather small, only a few
percent over a considerable penetration distance of 80 Beer
lengths. Here we have used 2 hyperbolic secant initial
pulses in order to avoid reshaping effects that would ac-
company other kinds of initial pulse shapes and would
mask the results of energy loss particularly at the begin-
ning of the propagation.

The time evolution of a Gaussian pulse of Fig. 1 of ini-
tial area 1.87r is displayed in Fig. 3. Here we have plotted,
as a function of time, the amplitude l(t', z)l and the
chirp, computed from aF(t', z)/at = alm[ln fl(t', z)]/dt', of
the pulse at the entrance face of the medium and at sev-
eral consecutive positions inside the medium. We see how
the pulse, initially unchirped, develops an asymmetric

(a) (b)
Fig. 5. Amplitude modulation of the Fourier transform of the
pulses caused by the presence of a Kerr nonlinearity in the case
of (a) a sharp line and (b) a broad line. The curves were obtained
from Fig. 4 through the definition aQ = I(A',Z)I - I(A',.)I
and represent the differences between the resonant propagation
with and without the Kerr nonlinearity.

X'(A',Z)

0.1. 0.7-

0.
0.
-3 0 ' 3 3 0 A 3

(a) (b)
Fig. 6. Dispersive or real part of the total local susceptibility for
(a) the sharp line and (b) the broad line presented in Fig. 4.

aa24

az-12
6Ck 6Ck/

-3 0 ' 3 -3 0 ' 3
(a) (b)

Fig. 7. Differences in the dispersive part of the local susceptibil-
ity of the resonant propagation with and without the Kerr nonlin-
earity for the (a) sharp-line and (b) broad-line cases. The
susceptibility with the Kerr nonlinearity was taken from Fig. 6,
while the Kerr-free susceptibility was obtained by the numerical
solution of the propagation equations with the same parameters
as those used in Fig. 4 but with CK = 0.
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\_Z`P 24 ffvJ
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(a) (b)

Fig. 8. Absortive or imaginary part of the total local susceptibil-
ity for (a) the sharp line and (b) the broad line presented in Fig. 4.

cN(,) - X " o:'s Z)

aE24

=12
3 Ck kl 1

o aZ=O

-3 0 A' 3 -3 0 L' 3
(a) (b)

Fig. 9. Differences in the imaginary part of the local suscepti-
bility of the resonant propagation with and without the Kerr non-
linearity for the (a) sharp-line and (b) broad-line cases. The
susceptibility with the Kerr nonlinearity was taken from Fig. 7,
while the Kerr-free susceptibility was obtained by the numerical
solution of the propagation equations with the same parameters
as those used in Fig. 4 but with CK = 0.

merically, guided by the results derived in Section 2 for
short propagation distances.

The influence of the Doppler broadening on the fre-
quency distribution of the Kerr pulse is rather small, as
we can see from Fig. 4, where we display the modulus of
the Fourier transform of the pulse at different places in
the medium.

The phase modulation is a small effect of the order of
CK, and in order to show its presence clearly we compare
the Kerr pulses with the corresponding SIT solitons.
There is not only a phase modulation as seen in Fig. 3 but
also an amplitude modulation as is evident in Fig. 5, where
we plot the difference Al = I(A',)I - I(A', 0) between
the amplitude of the Kerr pulse, Ifl(A', z)I, and the corre-
sponding amplitude of the soliton, I(A',0)j. This ampli-
tude modulation strongly resembles the phase modulation
at short propagation distances (see Fig. 3). The fre-
quency pulling, the spectral narrowing, and the amplitude
of the modulations are weaker for a broad line, but the
spectral width of the modulation increases with the
Doppler broadening.

The distinction between the lossless and linearly disper-
sive SIT-soliton propagation and the propagation with a
loss and a dispersion introduced by a Kerr nonlinearity is
best understood by an analysis of the absorptive and
dispersive parts of the susceptibility. The diagrams in
Figs. 6 and 7 depict the behavior of the dispersive compo-
nent X' of the susceptibility, while those in Figs. 8 and 9
show the behavior of its absorptive component X", for (a) a
sharp atomic line and (b) a broad line. In Fig. 6(a) we see

that for the narrow line the parabolic dispersion (quadratic
dependence on A') at short propagation distance, which
we predicted in Section 2, progressively changes into a
linear one.

We trace the origin of the energy loss by the pulse to its
interaction with the dipoles of the TLAs, specifically to
the behavior of their absorptive components v(At', z),
which are individualized by their detunings A. It is well
known that, in the absence of the Kerr nonlinearity, the
temporal behavior of individual v's is antisymmetric in
time and that all of them are in phase in the sense that all
pass through zero at the same time and achieve their local
extremes simultaneously, tracing curves of similar shapes.
Moreover, the curves for a detuning A and the opposite
detuning -A coincide [see Fig. 10(a)]. This behavior per-
sists along the whole propagation distance; the results in

-K-

a>

1

0

-1

_nT

.-

(a)

±2IlI i
(b) m a o

.T_~~~~~~A

5 10 tar

(d) -A1

. ~ ~~ I2

Fig. 10. Temporal dephasing introduced by the Kerr nonlinear-
ity in the individual behavior of the absorptive part of the atomic
polarization, v(t', z, A). The case in (a) corresponds to the Kerr-
free medium. The curves of TLA's for different detunings follow,
but for a scale factor, the same time evolution. We also note that
a TLA of detuning A follows exactly the behavior exhibited by a
TLA with detuning -A, permitting the factorization of u The
presence of the Kerr nonlinearity introduces both the dephasing
and the asymmetry of the temporal behavior of v and inhibits
the factorization. All the curves are obtained at a propagation
distance az = 24 within the medium and under circumstances
identical to those used in Fig. 2. In (b) CK = 0.0001, in (c) CK =
0.001, and in (d) CK = 0.01. Same scale for (a)-(d).
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A=O

0

5 t/r 10
Fig. 11. Influence of the Doppler broadening on the temporal
behavior of v(t', z, A) during the resonant propagation in the pres-
ence of the Kerr nonlinearity (CK = 0.001). The sharp-line case,
shown in (a), corresponds to the analytic solution of Ref. 5.
When the Doppler width is increased, the effects of dephasing
and asymmetry on v become evident. The curves are taken at
the propagation distance az = 24 and under the circumstances
described in Fig. 2. In (a) /T2 = 3/20, in (b) r/T2 = 3/2, and in
(c) T/T2 = 9/2. Same scale for (a)-(c).

Fig. 10 correspond to a large propagation distance of
az = 24, where we suspect that the steady-state condi-
tions are achieved. It is this behavior of the dipoles of the
TLA's that permits us to write v(A, t', z) = F(A)v(0,t', z);
that is to say, this particular behavior is the source of the
all-important factorization assumption. Therefore this
assumption is not a pure mathematical ansatz, useful in
obtaining analytic solutions, but has a firm basis in the
physical behavior of the resonant atoms.

Numerical solutions for an input 27r hyperbolic secant
pulse show that, as the Kerr nonlinearity is increased
within its allowed perturbative range, the behavior of
v(A', z, t) changes drastically. This is seen in Figs. 10(b),
10(c), and 10(d), where the Kerr constant CK assumes the
values 0.0001, 0.001, and 0.01, respectively. For CK =

0.0001 the change is not noticeable at the scale of the
drawing, but for CK = 0.001 and CK = 0.01 it is obvious.
We see that only the curves for on-resonance atoms (A' =
0) pass through the origin, while the curves of all other
atoms cross the time axis at progressively larger times.
We see also that the curves for ±A are now separated.

Not only is this distortion dependent on the magnitude
of the Kerr nonlinearity itself but it also strongly depends
on the value of the inhomogeneous broadening. The dia-
grams in Fig. 11 show this effect nicely. When the line is
narrow (TIT2 = 0.15), the curves for v(A', t', z) almost co-
incide, but as T/T2 increases, these curves grow more and
more out of step. It is now clear why all previous at-
tempts to obtain analytic solutions for the steady-state
equations of motion in the presence of the Kerr nonlinear-
ity in inhomogeneous absorbers by using the factorization
assumption have failed. They have failed because the
factorization assumption itself fails; i.e., the function F in
v(A, t', z) = F(A)v(O, t', z) is itself, in this case, a function
of time.

4. CONCLUSIONS
The present numerical studies have shown, contrary to
our expectations, 8 that an absorber composed of inhomo-
geneously broadened two-level atoms embedded in a non-
linear Kerr host dielectric cannot support propagation of
an ideal soliton. We have found, in fact, that a pulse prop-
agating through such a medium loses its energy, although
it seems to maintain its area. However, this energy loss
is so small, even along a considerable propagation dis-
tance, that it will be difficult to distinguish these Kerr
pulses from true solitons in a laboratory experiment in
which, in any case, the transverse effects limit the coher-
ent propagation to some 10 Beer lengths. For this reason
we call these pulses quasi-stationary. We have demon-
strated the energy degradation of these pulses through
their space evolution as well as through the analysis of the
local susceptibility in the frequency domain. We have
found that the physical reason for the energy loss of the
pulse is the asymmetry, introduced by the Kerr nonlinear-
ity, in the temporal evolution of the absorptive compo-
nents of the resonant atoms. This microscopic effect
invalidates the so-called factorization assumption, while
its macroscopic average results in a barely detectable loss
of the pulse's energy.

APPENDIX A: DERIVATIONS OF EQS. (20)
We start with Eq. (12) in the text for the case CK = 0 and
where l(A', z) is the Fourier transform of the McCall-
Hahn soliton fi(t',z) = fo sech(T'/T) ( 0 = 2/,T' =
t' - z/V,). Hence

Q= J exp(iAt') (2/T)sech(TVTf)dt'

= 2r sech(7rT/2). (Al)

Next, we compute

f(B(p)) = Bf((u) + i(v)).

The first term vanishes because u(A, t') is odd in t' and
because we are taking g(A') to be an even function of A'
(Gaussian). The second term can be written as

f(iB(v)) = 2iB(F) J exp(iSt')sech(T'fr)tanh(T'/r)dt'

= -2iBT(F) f exp(iSt')[sech(T/T)/at']dt';
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when the known properties of Fourier transform for the
derivatives are used, the preceding equation reduces to

f(iB(v)) = -2B3TT2 (F)A' sech(7rTN/2).

Hence the susceptibility due to TLAs can be written as

XTLA(A, Z) = 6A'. (A2)

In deriving Eq. (Al) we have used the steady-state
relation8

v2 2(F)= 1 (A3)

The simplest way of establishing this relation is to start
with the steady-state equation for Q and use the factoriza-
tion assumption:

Q= v(F)v(0, t'). (A4)

On the other hand, the derivative of the hyperbolic secant
soliton permits us to write

= -(lr2 )v(0, t'). (AS)

Equating the right-hand sides of Eqs. (A4) and (A), we
obtain Eq. (A3).

Now we must calculate the nonresonant susceptibility

X,(&,, Z) = Cf(|I 2 Q)If A6

where A is given by Eq. (Al). The Fourier transform in
the numerator in Eq. (A6) can be written as

AII 2) = 8 1 exp(iSt')sech3 (T'/')dt'.

We can find the Fourier transform of sech3 (T'/r) in
Ref. 16, which leads to

fil&i2h) = 4r(1/2 + A 2)sech(=Nr/2). (A7)

Substitution of Eqs. (Al) and (A7) into Eq. (A6) leads to the
result in the text.

Finally, the total Kerr susceptibility at the beginning of
the propagation,

,XK(A',O) = SS + CKWo 2 /2 + 2A' 2),

can be rewritten, by the technique of completing the
square in the second term, as

xK(A ,°) = CKfo2/2 + MuV/2 + 2CK(S + /4CK)2 ,

where Au = 6ICK. Since XK(A,0) = CKf 2 /2 + 8A,/2, we
obtain Eqs. (20) of Section 2.
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