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Abstract 

The report addresses the thermal transient of the sen- 
sor  of aging (anharmonic mode h5,3 of AT-cut crystal 
resonator) of the crystal standard based on the modula- 
tional method. The thermal dynamic properties of the 
aging  sensor influence the effect of the aging compensa- 
tion for the standard. We present the thermal model of a 
crystal resonator and consider in detail the model of the 
thermally induced frequency transient in a resonator 
within the ovenized oscillator. The model has been  ex- 
amined  for the aging sensor excited by modulation 
within the Colpitts oscillator. Based on  the model, we 
digitally simulate the anticipated behavior of the ther- 
mally induced frequency of the  aging sensor and  com- 
pare it with that obtained by measurement. Finally, we 
show  how to compensate the temperature dependence of 
the aging  code of the standard. 

Introduction 

The recently proposed modulational method [l]  has 
proven to be  an effective way to achieve computerized 
aging rate compensation as realized in the Chl-88 type 
crystal standard [ 2 ] .  In this standard, the output fre- 
quency behaves in time  as rather a stationary random 
process instead of a non-stationary one as in traditional 
crystal oscillators. Although the aging behavior is  im- 
proved,  random frequency variations may  be  increased 
because of the aging  sensor temperature sensitivity (-1 
Hzl’K). Studying  this effect, one may conclude that it 
may  be strongly reduced by digital filtering of the tem- 
perature-induced variations of the digital compensating 
voltage  formed by the  aging  sensor. It  is obvious, how- 
ever, that a thermal impulse response of the aging sensor 
is necessary to make digital filtering and  that inaccura- 
cies in the response result in a frequency behavior with a 
filtering. 

Attempts to create dynamic thermal models  for the 
crystal resonator had  been  undertaken  more than once 
[3]-[6]. Nevertheless, only Ivlev’s dynamic thermal 
frequency coefficient for a frequency domain [3] and 
Ballato’s Zcoefficient [4] for a time domain  of tem- 
perature changes have gained currency. Holland in [S], 
[6] and others [7]-[lo] have carried out theoretical in- 
vestigations of resonator frequency processes resulting 
from  the influence of ambient temperature dynamics. Of 
special significance is the work of Valentin et al. [ l  I ] ,  

who presented results of experimental studies of thermal 
flows and their contributions to the processes of heat 
transport for vacuum-enclosed resonators. The results of 
this and other papers had  been  used further for the 
evaluation of thermal dynamic frequency changes in a 
self-contained crystal plate [12]-[14]. At present, these 
theoretical and practical materials allow us to work out 
the model of a thermally induced fiequency transient of a 
vacuum-enclosed resonator as it reacts to a step change 
in ambient temperature. 

In this report we deal with thermal dynamic properties 
of the anharmonic sensor of aging being based on a 
physical analysis of thermal processes in  both resonator 
and oscillator within an  oven system. First,  we present 
the  improved thermal model of a crystal resonator within 
an oscillator, consider in detail the model  of a thermally 
induced frequency transient, and show its correspon- 
dence with the Ballato’s coefficient. Then, we  verify the 
model  by experimentally. Finally, we present the  simu- 
lation results of the digital filtering of temperature for  the 
aging  sensor frequency and show how to compensate a 
temperature dependence of an aging code of the stan- 
dard. 

Thermal  Model of a  Crystal  Resonator 

Let us consider the basic design of a precision  vac- 
uum-enclosed quartz crystal unit  employing thickness- 
shear vibrations and operating under the temperature 
influence within an OCXO. Let us also select a crystal 
plate, crystal holders (A) ,  and an enclosure ( E )  as the 
main resonator parts (Fig.1). Here, both  principal  and 
aging  sensor modes exist within a crystal plate volume. 

- , v 
T l S X  

Figure 1 .  Thermal  model of a crystal resonator 
- 

0-7803-5838-4/00/$10.00 Q 2000 IEEE 66 



Taking the early measurement results  obtained  by 
Valentin et. al. [9], let us separate  the general thermal 
flows in a  vacuum-enclosed  resonator  as  follows: Tfl is 
the  internal  flow that forms a closed path through the 
parallel  parts of the oscillator electronic plate ( f l  and 
resonator  enclosure ( E ) ,  crystal  holders (A),  and  piezoe- 
lectric plate; Tlex is the first external  flow that  closes 
itself through the resonator enclosure, TZex is  the second 
external  flow  that  is formed by the oscillator  body.  In 
addition, we note,  that there may  be  more than one ex- 
ternal  flow  in the OCXO compared with the resonator. 
Because  the  heat transfer and exchange by  radiation  is a 
rather  small  effect  in vacuum-enclosed crystal  units [ 131, 
the  model of the main resonator thermal circuits  may  be 
presented  as shown by the following parts (Fig. 1): A is a 
part of the  crystal  holder, B and C are, respectively, the 
edges and center of a  crystal plate. In the general case, it 
is  very  difficult to simulate the interface between the 
oscillator  and resonator. Let us mark this  as D and give it 
the  character of a delay line with rz response time for 
thermal exchange between p'!.' and Tn. With  this  defini- 
tion, T~ = 0 if the resonator has only one external  circuit 
(i.e.. direct  contact  of  the enclosure to the ambient). 

Partial Functions of a Thermal  Transienf 
Considering a crystal  holder as a  thin shaft with coor- 

dinate axes beginning from  the point of contacts  with  a 
piezoelectric  plate.  let us write the thermal conductivity 

equation in the form of " = .kc c2' , where U is  an 

environment temperature, 0 2 x 2 1 is  a  current coordi- 
at c,p, ax2 

The thermal transient in a  crystal  plate  is  described by 
the conductive equation [9], [ 141 

cp ~ ~ - div(Kgradu) = F ( x , y , z , t ) ,  
du 
dt 

( 3 )  

where c, p, and K are, respectively.  the  specific  heat, 
density, and heat conductivity of quartz, F(x,y,z,t) is  a 
hnction of the internal sources of heat. 

In cylindrical coordinates r, cp, and z relative to a 
disk-shaped  piezoelectric  plate  (Fig. l ) ,  the solution of 
the equation ( 3 )  has the form [ 141 

where u o  and AU are the  initial environmental tem- 
perature and its increment and k ,  m ,  and I are  integer 
numbers corresponding to xknl,(r,cp,z) basic  functions in 
the  directions of z, cp, and r, respectively,  employed in 
the Fourier method solution of ( 3 ) .  Here also akmi and bk,,,, 
are Fourier coefficients, and rkm, are  the  response times 
of  the  system of functions. Particular solutions of (3) for 
different types of piezoelectric  plates are given in [5], 
[l 11-[14]. 

Eg. (4) describes the temperature behavior  both at the 
center (r = 0) and at the edges (v = R)  of a  crystal  plate. 
For a solution error of a  few  percents, one may restrict 
the  solution (4), as in the case of (2). with  an approxima- 
tion of the form 

f l \  

nate, l is a crystal  holder  length, k,. and c,. , pc are, re- 
spectively,  the  heat conductivity coefficient,  specific 

where A u ~ ~ , ~ ) ~  = u ~ ) ~ , ~ ~  - uo and T Q ~  and rLiu are, re- 

heat, and density of the holder material, f is  a current  spectively, response times for the edges and the  center of 
time. For  vacuum enclose one may consider the  sides  the crystal  Plate. 
and crystal  holder part at the point x = 0 as  heat  insulated 
and  the  parts at the point .x = I as supported with the  sur- The  Model of a Thermally  Induced 
rounding temperature ;I,. Such limitations determine the Frequency Transient 

boundary conditions in the  forms of = 0 and 

U / , = ,  = ;7, . For the uniform initial conditions u , , ~  = U,, 
the  solution at the point x = 0 is given as 

ax x=o 

where AU = U" - Cl and 5,. = 4l2cCpc 1 x2k' . Calculations 
show  that neglecting all terms in ( l ) ,  excluding the first 
(n = 0), results in time-averaged error no more than  a few 
percents. Thus, for the thermal transient model  we  may 
use  an  approximate  solution in a form of 

I 

Aul z Aiij 1 - .-:l , 

Based  on the previously mentioned reasoning, let us 
create a  model for  the thermally  induced  resonator  tran- 
sient. For the conversion of a temperature difference 
between  the center and edges of a  piezoelectric  plate 
Au, = U,, - uOK to the frequency change Af(Au,,) that 
is  caused  by  the force-frequency effect in quartz crystals 
[16]: we  will  use the following function [ l31  

where p, = 3 . 8 5 ~ 1 0 ~  NKIm-', U, =&,q/ Dn, H and D are, 
respectively, the thickness and diameter of the  crystal 
plate; is the  vibration frequency of the  resonator; 7 -- 1 
is  a  correction coefficient, n is the  resonator  mechanical 

where & 4 , ( [ ) = U 1 ( [ ) - C ,  , U , ( [ )  is ( l )  for n = 0 . and 
Aii  is  the temperature increment. cient averaged over cp [ 161. 

harmonic number, K ,  ((p) is the  value of Rataiski coeffi- 
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Operator  model 
Let  us define an operator circuit model of the  resona- 

tor in the  form of a  converter  of  ambient  temperature 
variations AT into frequency  changes Sf (Fig.2), con- 
sidering the dynamic  thermal model (Fig.1). 

The delay  operator for the part D is described as 

K ,  ( p )  = k Z P L  , (7) 

where p is the  Laplace operator, kz is the attenuation co- 
efficient for environment  temperature  influence describ- 
ing the effectiveness of  the heat isolation (k, < 1) and 
oven ( k ,  << 1) systems of an OCXO. 

Circuit gains that correspond to the crystal holders 
K, . (p)  ( A ) ,  crystal plate edges ~ , , ( p )  (B), and the 
center of the crystal plate &,(p) ( C )  may  be written 

according to ( 2 )  and ( 5 )  in the form of 

Linear  Inertial Part 

where, for vacuum-enclosed resonators, one  may take 
kc.,OK,(IO f l .  Gain &(p)  corresponds to the static pie- 

zoelectric plate temperature r, that causes  a  change  of 
frequency  described by the nonlinear static fiequency- 
temperature characteristic of a  resonator within an oven 

where C,v = TI - To ; cl, c2, and c3 are  the  polynomial  ap- 
proximation factors; and To is the  reference  temperature 
(To = 20°C at NTP). 

A temperature difference  AT^ =  AT^^ - AT,, is trans- 

formed into a  dynamic  frequency  change Sf,, via a coef- 
ficient 

that is obtained  by (6)  as S, = 2pqHDu, KJ(cp) . 
- 

i Nonlinear and Non-Inertial  Part 

Figure 2. Thermal  dynamic  operator  model of a crystal resonator 

“Dynamic”  thermal  transient 
Let us consider  a  “dynamic“  thermal transient AT,, in 

a resonator. Here  and  below, we use  time solutions of 
operator  equations (7) and (8). 

After  a  temperature step AT, the crystal holders and 
crystal plate edges start to  warm-up dependent  on  delay 
time tZ (7) and  response  times  and T~~ (8) by the  law 
obtained by the  model [ 191 (Fig. 2) 

where U, = TC / (TC - ru.) , and a2 = rQ. / (V - TQK). 

the crystal plate is obtained by the model as 
The function for a  temperature  change at the center of 

where bl = K’&TQK - tQO) l Y , b2 = T ’ Q K ( T ~ ~  - Q) , b3 = 

T’QO(TC - KQK) f Y ,  kQ = kZkkQKkp0 , and Y = T * ~ T ~ , Y  - 

The law describing  the  temperature difference be- 
tween the center and  ages  of the plate may  be derived 
using (1 l) and (12) with k ,  z 1, which holds true for 
vacuum-enclosed resonators, and  may be  written as 

‘p) + “Qd‘QO - ‘ Q K )  . 

AT,(?)= -ATk,k,k, 

where v = - ?C:-.. + ~. - -  ~ . , 
‘ c  - ‘ ~ Q K  Y 

‘ O K  ‘&(TQO - ‘C.) ,and v, = t&(‘C - T Q K )  v* = . + ._ ~ ~ 

‘C - ‘QK Y Y 
l - T L  I - T z  1 - 7 1  Based  on (1 3)  and ( l  0), a “dynamic”  frequency tran- 

&f,(t> = SRAT”(0 ’ (14) 

- .. . 

1 - b,e - b,e ‘@ - b,e , ( l2 )  sient  is  written  as 
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”Static”  thermal  transient Function  of  a  frequency  thermal  transient 
First,  let us note that  the amplitude distribution of It  follows from the  model (Fig.2) that the thermally 

resonator  vibrations  is  given  by  the law [ 171 induced frequency transient may  be  written as a sum of 

where n is the mechanical harmonic number, x and z 
are the coordinate axes in the plane of the piezoelectric 
plate, p and q are  indices of the anharmonic vibrations, 
a and Pn are determined in [ 171, and H, and H, are 
Hermite polynomials. 

It follows from (15)  that vibration modes exist within 
different areas of a  crystal  plate and nonuniformly dis- 
tributed temperature should influence differently the 
principal  and anharmonic sensor modes [ 1 81. Neverthe- 
less,  we consider here onIy the case matched with  Bal- 
lato’s  model [4], in which case, a temperature averaged 
over  the  crystal  plate  volume causes the static tempera- 
ture difference A T .  As this temperature must be static 
by definition (9) but  is changed in time by  a transient, we 
call it the “static“ temperature. 

Let us define the “static” thermal transient. According 
to Fig.2,  the  response A.T,(t) to an input temperature 
step AT change is determined by the operator gain K&) 
= K&)K&)KQ&)KQ(p). For the averaged temperature 
of  resonator,  the transient function  has  a form 

g ,  (f) = 
U (Y, cp, 2, t )  - U (V, cp, G O )  

U ( V ,  Cp, 2 ,  00) - U ( Y ,  cp, .,O) 
(16) 

average temperature obtained  by (4) and sZ 5 t. This 

Let us find out the expression for  the  transient  func- 
tion (20). We sum (14) and (1 8) and get  finally  a  ther- 
mally  induced transient 

i l - T /  !-Ii 

6 f ( f )  = d,AT,(t)  - S,,AT vle “’ + vze ‘W + v,e 

+ d2A7;’(t) + d ,AT3( t )  

~~ 

-!;c:: ] 
(21) 

where AT,(t)  is obtained by (19), S,) = S,,k,k,.k,, is a 
thermal dynamic coefficient coupled with the Ballato’s 
coefficients .Z by the  relationship [ 191 

a = -S,) 
- TOO(T0K - T c  )(TQO - Tc )(T,o - T,, ) 

T A T P l l  - T a d  + T.Z,,(TPK - 5.1 - T;,K(T.O,l - T< 1 
(22) 

Let us conclude that  Ballato’s coefficient a corre- 
sponds to an average temperature of resonator. 

Thus, we have worked out the model (21) of ther- 
mally  induced frequency transient for vacuum-enclosed 
resonators  as  reaction to a temperature step.  The model, 
being  coupled  with Ballato’s  form, has  a  universal char- 
acter  and  may be used for  the prediction of thermal  tran- 
sient for  principal and anharmonic modes. We  use  the 
model (21) in this paper to  get  analysis of the anhar- 
monic aging sensor only. 

model  is  used for all vibration modes, which  have maxi- 
mums (15) in different zones of a  resonator volume. To Experimental  Verification of the Model 
determine g,(& we average a plate “dynamic” tempera- 

ture (13) as follows: J A T , , ( ~ ) ~ ~  = - ~ ~ , c f , ~ , ( ~ ) ,  where by (21) with experimental data  for the crystal  standard 
based  on  the  vacuum-enclosed  AT-cut  resonator of PK- 
187  type. The oven temperature of the standard was sus- 
tained at the  point x,, = 65“c, corresponding to the up- 

. ,  

I In this  section we compare calculated curves defined 

= /  

cf, = I’,T,. + v ~ T ~ ~  + V , T “ ~ ,  r, = ATk,k,k,, , and 

1( 
l - T z  /+I/ 

g,(t> = 1 - v,T<.e- 1‘ + v2sQKe- + v 3 T c O ~ ~ ~ ~  1 1  cl 
(17) 

Based on (1 7), we find out  a  “static” thermal transient 
AT,(t) = ATk,g, ( t ) ,  where k, = k,k,.k,,k, . Dividing 
ATXI) by k,, we reduce it  into  an  input temperature 
AT(t)  = AT’,(t) and: based on (9), come to the  “static” 
frequency  transient 

s f , ( t ) = d l A ~ ( t ) + d , A 7 ] ’ ( t ) + d , A T , ’ ( t ) ,  (18) 
where 

A7;(r)=TB -To+ATg,(Z),  (19) 

per turnover temperature of the mode h,,, with  the  prin- 
cipal  frequency f p  = 5 MHz. At this  point,  the anhar- 
monic  mode h, , ,  cf, E 5.16 MHz), excited by modulation 
[ l ] ,  has slope -1 HdK of its frequency-temperature 
characteristic. 

To generate thermal transients of the aging sensor 
frequency F =fo  -h, the standard  was  placed  into  a  tem- 
perature  oven.  The approximation coefficients of the 
aging sensor static frequency-temperature characteristic 
(19) within the operation temperature range  from 0°C to 
50°C and  with = 20°C had  been  found in accordance 
with the methodology [ 191 and  had  the  values of 

., . 

TB is  a  value  of T(t) at a start point, dl, d,, and d3 are  ap- dl = 7 . 2 2 6 x l O - ” / K ,  d, = - 1 . 8 8 6 ~ 1 0 - ~ ’ / K ’ , a n d  
proximation coefficients. 

69 



d, = 7.74 X / K' . (23) 
Step-by-step changes  of ambient temperature caused 

the standard to respond to and brought the aging sensor 
Frequency from one point of the frequency-temperature 
characteristic to another by the transient law. Let us give 
the  final results for the  average response times and ther- 
mal dynamic coefficient for  the frequency F [19]. 

z, = 4.6742  min, (24) 
T,. = 4.2216 min, (25) 
zClx = 3.7453 min, (26) 

T~~ = 16.32 1 min, (27) 

S, = (- 0.28 + 0.21T)x IO-' '  / K .  (28) 
Figure 3 shows, for example, the measurement data as 

well as approximation and prediction curves for thermal 
transients in the high temperature range.  The other re- 
sults may be  found in [ 191 respected to  the low  and  mid- 
dle temperature ranges. Also shown are the anticipated 
errors of digital filtering  of  temperature influence deter- 
mined as calculation minus  data.  One may see from these 
figures, and this is expected, that the individually found 
approximation function best fit the data. 
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Figure 3. Frequency  thermal  transients and errors of approximation and prediction in the high temperature  range 

The prediction curve (Fig. 3) was obtained by (21), MHz are formed.  An ambient temperature T(t) influences 
assuming either accurate (M.2-K)  or coarse (+I°K) the standard, and  of  small inertia a Crystal sensor, LC- 
errors of TB and AT measurement. Let us add,  the as- cut, measures this influence (Fig. 4) providing the tem- 

sumption of coarse temperature errors coarse significant perature code Ndt). 
To estimate efficiency of  the digital filtering of tem- 

in the predictions for the high (Fig. 3, and low perature influence, we introduce a computerebased 
[l9] temperature  ranges. In the range t i 9 i 9  this block  and calculate anticipated behavior of 
error is less visible. the temperature-free frequency of the  aging sensor. 

The simulation block  operates by the following way. 
Digital  Filtering of an  Aging  Sensor We take samplings of the temperature code Ndt) and 

Thermal Error form the temperature-dependent digital sequence x,. 
Using a frequency meter with a reference rubidium stan- 

In the following studies, we use function (21) with dard, we  form also  samplings F,(T,t) of the sensor fre- 
known parameters (23)--(28) of the transient (Fig. 3)  to quency F(T,t). 
compensate thermal dependence  of a frequency F(T,t) of Based  on (21) and (22)-(28),  we form the tempera- 
an aging sensor of the crystal standard based on the ture transient response of the sensor frequency 
modulational method. We assume to use the results to F, -4 
develop correspondent software of the  standard. = FN --F' ' (29) 

aging sensor frequencies& =5 MHz and F =h -S, = 0. I6 where F ,  is (21) for the steady state mode. 
In such type of standards [ 151,  both the  principal  and 
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We  then come to the impulse response F, -F0 
k c  = ~T (32) 

h = g, ~~ -g4 ~~, (30)  
n TV" where AT is step of an ambient temperature, and get 

where T V ,  = (100.. .1000)sec is n-th time sampling inter- 
val  formed  by a sensor frequency F .  F,'(T) = k,J, + k,, ' (33) 

we know x, and h,, then we calculate convo~ut~on where kea, is the  calibration  coefficient (integration  con- 
,, stant). Finally,  we calculate  the temperature-free  sam- 

Y,, = c X k h n - k  (31) plings F',(t) of the sensor frequency F(T,t) and come to 
k = O  

and  reduce  it to  the sensor frequency aging as follows. 
We  calculate the  scale  coefficient F, ( t )  = F,, ( T , t )  - F,'(T) . (34) 

the compensated frequency F(t) of the aging sensor 

Figure 4. Compensation of a temperature dependence of an aging sensor frequency for a  modulational  method-based 
crystal standard 

Temperature  dependence  compensation of the  aging 
sensor  frequency 

Let  us consider results of  the temperature dependence 
compensation of  the  aging sensor frequency based on 
discrete convolution. 

At  the  early  stage, just before the measurements, we 
made control of the standard frequency for  the reference 
rubidium source with the temperature 20°C inside  the 
temperature oven  and  set the frequency with the  error of 
some parts of IO"*. We started to measure through sev- 
eral  hours. During this  while the frequency F(T,t) had 
been  shifted  up to  82x so that  at  the start point we 
had 24.6"C. 

Fig. 5 shows the plot of the ambient temperature in- 
fluencing the crystal standard inside  the temperature 
oven.  During the  first hour of studies, the temperature 
had  been under the oven control  only. After that, we 
changed the temperature to  get a dynamic splash  and  a 
slowly changed temperature range. 

Fig. 6 shows the results of measurement, simulation, 
and compensation F,,(T,t), F',,(T), and F,,([), respectively, 
presented as continuous hnctions F(T,r), F'(T) ,  and F(f), 
respectively. 

Considering Fig. 3 ,  we assume  that  the transient  is 
finished  by I hour and  take this duration as the length of 
the  impulse  response  (28). Correspondingly, we dropped 
the processed data obtained during the first hour  because 
of transient. We also fitted the calibration coefficient tico, 

= 76x10-'* to obtain equality of the measured  and  simu- 
lated curves at  the point o f t  = I hour. 

Let  us carry out an analysis  of all  the  obtained  func- 
tions  (Fig. 6). 

Both  "Static" and "Dynamic" temperature depen- 
dences of the frequency of an aging sensor can  be 
predicted based on discrete convolution. 
There are  too small data during the  first  hour of the 
process of a convolution-based computation  that 
causes a significant prediction error. Thus, the  initial 
transient range should be dropped to avoid compen- 
sation errors.  As a result, a time delay is appeared. 
A simulated curve F'(T) obtained by convolution 
exhibits inertia  with  respect to that of the  measured 
data. The impulse response  length of the  crystal 
standard causes inertia  that cannot be  reduced in 
practice,  as  a rule. 
The temperature sensor inertia  and  inaccuracy of the 
impulse  response measurement led to inaccuracy of 
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the frequency prediction.  Thus,  of small inertia a 0 Fast frequency  changes  cannot be predicted based on 
temperature oven and a  temperature  sensor  inside convolution because of a big length of the tempera- 
the crystal  standard should be used. ture  impulse  response of the  crystal  oscillator. 
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Figure 5. Function of the ambient  temperature T(t) influencing  the  crystal  standard 
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Figure 6.  Effects of the  ambient  temperature  (Fig. 5 )  compensation: F(T,f) is the  measured  temperature-dependent fre- 
quency of the  anharmonic  aging  sensor, Ff7) is the  simulated  temperature-dependent  frequency, and F(t) is the com- 

pensated temperature-fiee  frequency 

The results implementation  into  the  standard 
In reality, in the crystal  standard based on the modu- 

lational method [ 151, one deal with the  temperature- 
dependent  code  of  aging  obtained by the principal fie- 
quency and that of the  aging  sensor.  Naturally, all above 
given justification should be  applied  to  the aging code 
because in this case one deal with software only. Let us 
show how to do it. 

An aging  code is formed as  follows. Based on a sen- 
sor frequency, we form the  time  interval TT,, and fill it  by 
the pulses of a  principal  frequency.  Thus, we  get 

(35) 

where k is coefficient to obtain T, = (1  00.. .1000)sec. 
We present (35) by the following way 

(3 6 )  

7 2  

where Afpll , A F n  = Afa, - Afpn, and Afm are tempera- 
me-dependent  parts of principal,  sensor, and anhar- 
monic frequencies,  respectively.  We assume Afp << f , ,  
4a << f a ,  and Af << ,!,fa, because& is ovenized, and 

get 
P 

where N,,(r) is sampling  of an aging-dependent code 
N ,  ( t )  = kf,, ( t )  / F ( t )  , N d T )  is sampling  of  a  tempera- 
ture-dependent add to the code 

N ,  ( T )  z - M( T )  ? 
@P 

F 

where f,,? and F are averaged principal and sensor fie- 
quencies. 



It follows  fiom (38) consideration that compensation 
algorithm (29>--(34)  may  be applied to the aging  code of 
the standard that equals the thermal  fiequency shift mul- 
tiplied by the constant  (35).  Hence, to implement the 
compensation  algorithm into the standard  software one 
should  measure the thermal transient of the aging  code, 
form correspondent  impulse  response, calculate convo- 
lution of the code  and the ambient  temperature,  and de- 
rive the result from the current code with delay to the 
transient. 

Conclusion 

These studies have  allowed us to formulate the fol- 
lowing conclusions.  A  model  (21) is effective for the 
prediction of  thermally induced frequency transients in 
an OCXO  and crystal standards  based on vacuum- 
enclosed crystal resonators. Major  parameters of a  model 
are response  times T ~ ,  rc ,  tQK, and rQo, a  thermal dy- 

namic coefficient S,, and coefficients of  a static tem- 
perature-to-frequency characteristic d l ,  d2, and d3. All the 
parameters are constant and defined by experimentally. 

The effectiveness of the digital filtering of the tem- 
perature  may  be estimated  based  on the Fig. 6. It strongly 
depends on measurement  inaccuracy  of the ambient tem- 
perature and the temperature  impulse  response of the 
standard. Length of the  impulse  response  strongly affects 
the error as well and  causes the time delay. 

Despite of inaccuracy of the approach, in whole, we 
get progress  on  a way of self-contained aging  compensa- 
tion in the crystal standard. 
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