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Abstract—We disclose the use of a suitable pair of phase-only masks 
for generating sinusoidal phase gratings, or sinusoidal phase zone 
plates, with tunable optical path delays. We show that these gratings can 
have either a 1-D or a 2-D radial structure. 
 
 

There are currently several competing techniques for 
implementing lenses with tunable optical power [1-5]. 
These developments can be related to the efforts 
addressed to control fully (not only for extending) field 
depth; without modifying the size pupil aperture at [6, 7]. 

 
Here, we unveil the use of a pair of suitable phase-only 

masks for generating 1-D rectangular, phase gratings, or 
2-D circular phase gratings and 2-D circular, phase zone 
plates. We show that, by a suitable mechanical alteration, 
these optical elements can have tunable optical path 
delays. 
 
Our current proposal extends the concept that was first 
proposed by Lohmann [8-11] and by Alvarez [12-14]. 
 
To our end, first, we discuss our proposal for generating 
1-D phase gratings. Next, we present our proposal for 
producing radial phase gratings and radial, phase zone 
plates. And finally, we summarize our contribution. 
 
In Figure 1 we depict the optical setup for illuminating 
two phase masks with a collimated beam. 
 
The complex amplitude transmittance of the first mask is 

  1 ex p i 2 s in 2 rec t .
x x

g x a
d L

    
      

    

 (1) 

In Eq. (1) we represent a sinusoidal phase grating with a 
fixed optical path difference a and a fixed period d. The 
last term of Eq. (1) represents the finite width, L, of the 
mask.  
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Fig. 1. Schematics of the optical setup for generating a 1-D sinusoidal 

phase grating, with a tunable optical path 

For the second mask, the complex amplitude 
transmittance is  

    2 1g g *x x . (2) 

Next, the two above masks are placed in close contact 
for setting a pair. By introducing a controllable lateral 
displacement D, between the members of the pair, the 
overall complex amplitude transmittance is 

 

   1 1g ; g g *
2 2 X

D D x
x D x x rec t

     
       

     

. (3) 

 
In Eq. (3) we consider that the optical system has an 
overall window, its width is equal to X; where X is smaller 
than L; say X ≤ L ‒ D. Consequently, the maximum value 
for the lateral displacement D should be less than L / 2. 
 
By substituting Eq. (1) in Eq. (3), the overall complex 
amplitude transmittance reads 
  

  g ; ex p i 2 π 2 a s in π co s 2 π
d d X

D x x
x D rec t

       
        

       

. (4) 
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It is apparent from Eq. (4) that the optical path delay 
varies as a sinusoidal function of the lateral displacement 
D. We recognize also that the period d remains constant.  

 
Equivalently, by using the Jacobi-Bessel expansion, we 

can express the overall complex amplitude transmittance 
as 
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 (5) 

 
It is clear from Eq. (5) that by introducing a controllable 
lateral displacements D, one can shape the Fourier 
coefficients of the grating. 

 
Now, we focus our attention on the generation of 

periodical phase elements with circular symmetry; as 
depicted in Fig. 2. For this application, we follow the 
proposals outlined in references [15] and [16-18]. 

 
Now, for the first element of the pair, the complex 

amplitude transmittance is 
 

  1 , ex p 2 s in 2 .
2

r r
g r i a c irc

p R

      
         

       

. (6) 

 
In Eq. (6), we denote as (r, θ) the polar coordinates at the 
plane containing the mask. Now, the letter p denotes the 
radial period of the circular grating. We represent the 
finite support of the mask by using the circ function, 
which is equal to unity only inside a circle of radius R, 
otherwise the circ function is equal to zero.  
 
For the second element of the pair, the complex amplitude 
transmittance i 
    2 1g , g * , .r r    (7) 

 
As before, the two above masks are placed in close 
contact for setting a pair. However, now we introduce a 
controllable in-plane rotation β, between the members of 
the pair. Then, the overall complex amplitude 
transmittance is 
 

   1 1g , ; g , g * , c irc .
2 2 R

r
r r r

      
           

     

 (8) 

 
 

 
 
 

 
 

Fig. 2. Optical setup for generating a radial phase grating, with a 
sinusoidal profile and with tunable optical path delays. 

By substituting Eq. (6) in Eq. (8), the overall complex 
amplitude transmittance reads 
 

    , ; e x p i s in 2 .
r r

g r a c irc
p R

     
         

     

. (9) 

 
It is apparent from Eq. (9) that the optical path delay 
varies as a linear function of the rotation angle β. We note 
that the generated grating maintains the same period p. 
For the sake of completeness of our current discussion, we 
recognize that the Jacobi-Bessel expansion of Eq. (9) 
reads 
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 (10) 

 
From Eq. (10) it is clear that by controlling the in-plane 
rotation angle β, one can control the Fourier coefficients 
of the circular grating. 
 

For our final application, we consider the optical setup 
that is shown in Fig. 3. For the first element of the pair, 
the complex amplitude transmittance is 
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Fig. 3. Schematic diagram of the optical system for generating a radial 

zone plate, with a sinusoidal phase profile, and a tunable optical path. 

For the second element of the pair, the complex amplitude 
transmittance is the complex conjugate of the expression 
in Eq. (11). We repeat the procedure outlined before for 
setting the pair. The overall complex amplitude 
transmittance is 
 

   1 1g , ; g , g * , c irc .
2 2 R

r
r r r

      
           

     

 (12) 

 
By substituting Eq. (11) in Eq. (12) we obtain 
 

 
   

2
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From Eq. (13) we note that the optical path delay varies as 
a linear function of the rotation angle β. As before, the 
circular phase variations maintain the same period p. The 
Jacobi-Bessel expansion of Eq. (13) is 
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 (14) 

 
Consequently, by controlling the in-plane rotation angle β, 
one can control the Fourier coefficients of the phase-only, 
zone plate. 
 
For applications of Talbot interferometry [19, 20], and 
before the invention of structured illumination [21], one of 
us suggested using a phase grating, for illuminating the 
sample under test. In this manner, one avoids the 
generation occluding regions on a sample [22]. 
Additionally, the use of a phase grating shortens the 
length of the Talbot interferometer.  
 

Hence, here, we recognize that the previously described 
gratings and the zone plate can be used for illuminating a 
sample which is under test in a Talbot interferometer. To 
this end, it is convenient to image the above described 
phase structures on the sample under test. This task can be 
done by employing a suitable varifocal lens [23-25]. 
 
Summarizing, we have extended the Lohmann - Alvarez 
technique for generating periodic phase structures, with a 
controllable optical path difference. 
 
We have shown that the phase structures can be 1-D 
rectangular phase gratings, 2-D circular transparent 
gratings and 2-D phase-only zone plates. 
 
We have reported the formula describing the influence of 
the proposed technique on the Fourier coefficients of 
periodic structures. 
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