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A B S T R A C T

For describing the visibility of the Lau fringes, we define complex visibility function. This definition is useful
for assigning tolerances to the geometrical bends of an incoherent slit source. We relate this definition to
the characteristic function of a random process, for assigning tolerances to the locations of a random set of
mutually incoherent point sources. We apply our results for analyzing the temporal mismatches between the
period of the harmonic motion, of a point source, and the detector average time. Several numerical simulations
are included.

1. Introduction

For analyzing several interferometric devices, Michelson introduced
the concept of visibility [1]. For defining and measuring the degree of
coherence, of a planar source, Zernike proposed to apply the concept
of visibility, when analyzing the interference pattern of Young’s double
slit experiment [2]. Hopkins corrected and extended the previous treat-
ment, for discussing stellar interferometry, the illumination in optical
microscopy and for describing a general theory of image formation [3].

As depicted in Fig. 1(a), Zernike’s proposal can be applied for
heuristically describing the use of a set of mutually incoherent point
sources, for obtaining Young interference patterns with visibility equal
to unity [4]. And as depicted in Fig. 1(b), this heuristic treatment can
be easily extended to the use of a binary grating covering a spatially
noncoherent source. The next step, for heuristically describing the Lau
effect [5], is to substitute the double slit by a binary grating.

There are, of course, several other treatments of Lau effect [6–10].
These descriptions employ sound mathematical formulations, within
the current knowledge of the optical sciences. However, from our
viewpoint, these treatments omit to describe the visibility variations
of the Lau patterns.

As an exception, to the above statement, we note the description
of the Lau effect as a noncoherent version of the Talbot effect [11]. As
well as the other reports indicating that the Lau patterns exhibits a high
sensitivity to the angular misalignment of the composing gratings [12–
15].

Here, our aim is to understand and to apply the visibility variations
of the Lau fringes for setting a Lau sensor. To this end, we analyze
the visibility variations that are caused for three different illumination
architectures.

∗ Corresponding author.
E-mail address: jojedacas@ugto.mx (J. Ojeda-Castañeda).

First, we define a complex visibility function that relates the mod-
ulation of the Lau fringes with the bends on an incoherent slit source.
Second, we link the random locations of a cluster of mutually inco-
herent point sources with the visibility of the Lau fringes. Third, when
gathering long exposure pictures, we describe the visibility variations
produced by a point source, which follows a harmonic motion in the
source plane.

In Section 2, we exploit the formation of a self-image for obtain-
ing the deterministic optical transfer function (OTF) of the Lau effect.
Next, we discuss the visibility variations produced by a geometrically
distorted noncoherent, slit source.

In Section 3, we obtain the ensemble average OTF, of the Lau
effect, for analyzing the visibility variations generated by the random
locations of a cluster of mutually incoherent point sources. We show
that the visibility function is proportional to the characteristic function,
of the random process, which is the Fourier transform of the probabil-
ity density function [16]. We discuss the visibility functions that are
associated to three different probability density functions.

In Section 4, we obtain the time average OTF of the Lau effect,
for discussing the visibility variations of the Lau fringes, if a point
source moves harmonically inside the source plane. We propose to
use this type of visibility variations for setting a null test that senses
any mismatches between the averaging time 𝜏 and the time period T;
in a somehow similar technique to stroboscopic illumination [17]. In
Section 5, we summarize our contribution.

2. Deterministic OTF and slit distortions

In Fig. 2 we depict a single lens optical setup for discussing the
Lau effect as noncoherent imaging process between the source and the
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Fig. 1. In-register superposition of Young fringes. The point sources are spatially
incoherent, even when they have the same wave length. In (a) we employ three
different colors (despite that the wave length is the same) for depicting the in-register
superposition of three shifted irradiance distributions. In (b) we illustrate the use of
several spatially incoherent point sources for achieving an in-register superposition of
Young fringes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

first Talbot plane. At its front focal plane, we place a point source.
Hence, a plane wavefront illuminates a sinusoidal grating that is located
in close contact to a positive lens. We assume that the period of
the sinusoidal grating is d. Then just behind the lens, the complex
amplitude distribution is

𝑔 (𝑥′, 𝑦′) = cos
(

2𝜋 𝑥′
𝑑

)

. (1)

Under the paraxial regime, at the Talbot distance z = 𝑍T = (2 d2∕𝜆),
the complex amplitude distribution of the Fresnel diffraction pattern is

𝑢
(

𝑥 , 𝑦 , 2𝑑
2

𝜆

)

= cos
(

2𝜋 𝑥
𝑑

)

. (2)

The irradiance distribution, at the first Talbot image, can be thought
of as irradiance point spread function (PSF) of the Lau effect. That is,

ℎ (𝑥, 𝑦) =
|

|

|

|

|

𝑢
(

𝑥 , 𝑦 , 2𝑑
2

𝜆

)

|

|

|

|

|

2

= 1
2

[

1 + cos
(

4𝜋 𝑥
𝑑

)]

. (3)

Hence, the deterministic optical transfer function (OTF) of the Lau
effect is

𝐻 (𝜇, 𝜈) = ∫

∞

−∞ ∫

∞

−∞
ℎ (𝑥, 𝑦) exp [−𝑖2𝜋 (𝜇 𝑥 + 𝜈 𝑦)] 𝑑𝑥 𝑑𝑦

𝐻 (𝜇, 𝜈) = 1
2
𝛿 (𝜇) 𝛿 (𝜈) + 1

4

[

𝛿
(

𝜇 + 2
𝑑

)

+ 𝛿
(

𝜇 − 2
𝑑

)]

𝛿 (𝜈) .
(4)

Fig. 2. Schematics of a simple optical setup for implementing the Lau effect.

Fig. 3. Geometrical sketches for relating the lateral displacement of a point source
with the lateral shift of the irradiance PSF.

Now, we consider that the input point source is displaced to a new
position, say (𝑥s, 𝑦s), inside the source plane

As is depicted in Fig. 3, from simple geometric considerations, the
irradiance distribution is shifted horizontally by the distance

𝐷𝑠 =
(

2𝑑 2

𝜆𝑓

)

𝑥𝑠 = 𝑀 𝑥𝑠. (5)

In Eq. (5), the capital letter M denotes the geometrical magnification
of the imaging process under discussion. The Fourier transform of the
shifted PSF describes the following OTF

𝐻(𝜇, 𝜈; 𝛽) = 1
2
𝛿 (𝜇) 𝛿 (𝜈) + 1

4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈) exp
(

𝑖2𝜋 𝛽 𝑥𝑠
)

+

+1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈) exp
(

−𝑖2𝜋 𝛽 𝑥𝑠
)

.
(6)
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Fig. 4. Formation of the Lau fringes when using a geometrically distorted slit under
noncoherent illumination.

In Eq. (6) we use the Greek letter 𝛽 for representing the spatial
frequency

𝛽 =
(

4𝑑
𝜆𝑓

)

. (7)

Next, as depicted in Fig. 4, we assume that the noncoherent source
is a distorted slit. The irradiance distribution is represented by a narrow
slit along the horizontal axis. The width of the horizontal window
changes along the vertical axis; and the maximum width is equal to
L.

Additionally, the center of the horizontal window follows the in-
plane trajectory F(𝑦s). Along the vertical axis, the geometrically dis-
torted slit has width equal to Y. In mathematical terms, the normalized
source irradiance distribution is

𝐼0
(

𝑥𝑠, 𝑦𝑠
)

= 1
𝑌
𝑟𝑒𝑐𝑡

( 𝑦𝑠
𝑌

)

𝛿
[

𝑥𝑠 − 𝐹
(

𝑦𝑠
)]

. (8)

The new Fourier spectrum reads

𝐼0 (𝜇, 𝜈) =
1
𝐿 ∫

∞

−∞
𝑟𝑒𝑐𝑡

( 𝑦𝑠
𝑌

)

exp
{

−𝑖2𝜋
[

𝜇 𝐹
(

𝑦𝑠
)]}

𝑑𝑦𝑠. (9)

Hence, the new Fourier spectrum, of the Lau fringes is

𝐼 (𝜇, 𝜈) = 𝐻 (𝜇, 𝜈) 𝐼0 (𝑀 𝜇,𝑀 𝜈) . (10)

In Eq. (10) the capital letter M denotes, as before, the magnification
of the imaging system. If we employ the deterministic OTF in Eq. (4),
then the Fourier spectrum of the Lau fringes reads

𝐼 (𝜇, 𝜈) = 1
2
𝛿 (𝜇) 𝛿 (𝜈)

+1
4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈) ∫

∞

−∞
𝑟𝑒𝑐𝑡

( 𝑦𝑠
𝑌

)

exp
{

𝑖2𝜋
[

𝜇𝑀 𝐹
(

𝑦𝑠
)]}

𝑑𝑦𝑠+

+1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈)∫

∞

−∞
𝑟𝑒𝑐𝑡

( 𝑦𝑠
𝑌

)

exp
{

−𝑖2𝜋
[

𝜇𝑀 𝐹
(

𝑦𝑠
)]}

𝑑𝑦𝑠 .

(11)

Hence, the irradiance distribution of the Lau fringes is

𝐼 (𝑥, 𝑦) = 1
2
+ 1

2
Re

{

exp
(

𝑖4𝜋 𝑥
𝑑

) 1
𝑌 ∫

𝑌
2

− 𝑌
2

exp
{

−𝑖2𝜋
[

𝛽 𝐹
(

𝑦𝑠
)]}

𝑑𝑦𝑠

}

.

(12)

Here, it is convenient to define the following complex visibility function

𝛾 (𝛽) = 1
𝑌 ∫

𝑌
2

− 𝑌
2

exp
{

−𝑖2𝜋 𝛽 𝐹
(

𝑦𝑠
)}

𝑑𝑦𝑠. (13)

The result in Eq. (13) can be readily applied to describe, as a particular
case, a well-shaped, noncoherent slit source, which is tilted by an angle
𝜃, with respect to the vertical axis. In this particular case,

𝐹
(

𝑦𝑠
)

= [tan (𝜃)] 𝑦𝑠 . (14)

Fig. 5. Visibility function of the Lau fringes for an in-plane rotated, by an angle 𝜃,
noncoherent slit source.

By substituting Eq. (14) in Eq. (13), we obtain that for the tilted
noncoherent, slit source, the visibility reads

𝛾 (𝜃) = sinc
[

4𝑑
𝜆𝑓

𝑌 tan(𝜃)
]

. (15)

In Fig. 5, we plot Eq. (15) for displaying the visibility variations as a
function of the tilt angle 𝜃. We employ curves, in different colors, for
showing the parametric variation of the maximum horizontal width L,
as multiple numbers of the grating period, d.

From Eq. (15), and considering the value of the first zero of the sinc
function, we obtain the tolerance to angular misalignment

tan (𝜃) ≤ 𝜆𝑓
4𝑌 𝑑

. (16)

For a grating with period equal to 1 mm, Y = 6 mm, a lens with focal
length f = 200 mm, and for 𝜆 = 600 nm, we have that tan(𝜃) ≤ 0.005.

In Section 4, we show that for F(𝑦s) = A sin(2 𝜋 y /p), then
the visibility varies as if a point source follows a harmonic motion.
However, before that we discuss random departures from a straight-line
source. For this later purpose, it is convenient to obtain the ensemble
average OTF.

3. Ensemble average OTF

For obtaining the ensemble average OTF, we consider that the
lateral displacements, 𝐷s, are produced by random locations, 𝑥s, of a
cluster of mutually incoherent point sources. By denoting the probabil-
ity density function (PDF) of the random process as 𝑝X(𝑥s), the average
OTF is

⟨𝐻 (𝜇, 𝜈)⟩ = 1
2
𝛿 (𝜇) 𝛿 (𝜈) ∫

∞

−∞
𝑝𝑋

(

𝑥𝑠
)

𝑑𝑥𝑠

+1
4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈) ∫

∞

−∞
𝑝𝑋

(

𝑥𝑠
)

exp
(

−𝑖2𝜋 𝛽 𝑥𝑠
)

𝑑𝑥𝑠+

+1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈) ∫

∞

−∞
𝑝𝑋

(

𝑥𝑠
)

exp
(

𝑖2𝜋 𝛽 𝑥𝑠
)

𝑑𝑥𝑠.

(17)

We can rewrite the result in Eq. (17) as

⟨𝐻 (𝜇, 𝜈)⟩ = 1
2
𝛿 (𝜇) 𝛿 (𝜈) + 1

4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈) 𝑃𝑋 (𝛽)
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Fig. 6. Visibility reduction due to the lateral displacements of a set of mutually
incoherent point sources.

+ 1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈)𝑃𝑋 ∗ (𝛽) . (18)

In Eq. (18), we denote as 𝑃X(𝛽) the characteristic function, which is the
Fourier transform of the probability density function.

By employing the notation Re{z} that represents taking the real part
of a complex number z, we have that the average PSF is

⟨ℎ (𝑥, 𝑦)⟩ = 1
2
+ 1

2
Re

{

𝑃𝑋 (𝛽 ) exp
(

𝑖4𝜋 𝑥
𝑑

)}

. (19)

It is convenient now to define the complex visibility function of the
Lau fringes as

𝛾
(

2𝑑
𝜆𝑓

)

=
|

|

|

|

|

𝑃𝑋

(

2𝑑
𝜆𝑓

)

|

|

|

|

|

exp
[

𝑖 𝜃
(

2𝑑
𝜆𝑓

)]

. (20)

Using the notation in Eq. (19), we have that the average PSF is

⟨ℎ (𝑥, 𝑦)⟩ = 1
2
+ 1

2
|

|

𝑃𝑋 (𝛽 )|
|

cos
[

4𝜋
(𝑥0
𝑑

)

+ 𝜃 (𝛽)
]

(21)

The above results are next applied for describing the visibility vari-
ations of some random processes. Next, we use the uniform distribution
as the PDF that describes the random positions 𝑥s. In mathematical
terms,

𝑝𝑋
(

𝑥 𝑛
)

=
( 1
𝐿

)

𝑟𝑒𝑐𝑡
(𝑥𝑛
𝐿

)

. (22)

In Eq. (22) the upper-case letter L represents the width of the in-
terval, where the random locations are contained. For the uniform
distribution, the characteristic function is a real function

𝑃𝑋 (𝛽) = ∫

∞

−∞
𝑝𝑋

(

𝑥𝑛
)

exp
(

−𝑖2𝜋 𝛽 𝑥𝑠
)

𝑑𝑥𝑠

𝑃𝑋 (𝛽) = sin 𝑐 (𝐿𝛽)
. (23)

Then, in this case, the visibility of the Lau fringes is a real function,

𝛾 (𝐿) = 𝑠𝑖𝑛𝑐
(

4𝐿𝑑
𝜆𝑓

)

. (24)

In Fig. 7(a), we display the random positions (in arbitrary units)
of 1000 mutually incoherent point sources, inside the source plane
𝑋s-𝑌s. For emphasizing the statistical behavior of these locations, in
Fig. 7(b) we show the histogram of the different values of the horizontal
coordinate, 𝑋s. These horizontal positions can be described as a random
process, which obey a uniform probability density function.

In Fig. 8, we plot the visibility function in Eq. (24) as a red color
curve. And as a series of blue points, we depict the average visibility;
that is, the value of the visibility obtained by evaluating the average
irradiance distribution in Eq. (21). For our numerical simulations, we
assume that the grating has period equal to 1 mm, the lens has a focal
length f = 200 mm, and the wave length is 𝜆 = 632.991 nm. Along

Fig. 7. Numerical simulations of the locations of a cluster of 1000 mutually incoherent
point sources. In (a) we depict the positions (in arbitrary units) inside the source plane;
in (b) we show the histogram of the values taken by the horizontal coordinate 𝑋s.

Fig. 8. Graph of the visibility function, red curve, and the numerical simulation of
average visibility, as blue points, of the overall superimposed irradiance patterns.

the horizontal axis, we vary the values of L in units of millimeters.
From Eq. (24) and from Fig. 8, we note that the values of the visibility
function are greater than one tenth of its maximum value provided that

𝐿 ≤
( 10
11

𝜆
)

(

𝑓
𝑑

)

. (25)

Next, we employ a Gaussian distribution as the probability density
function of the random process. This distribution is centered at the
origin of the 𝑥-axis, then

𝑝𝑋
(

𝑥 𝑠
)

= 1

𝐿
√

2𝜋
exp

[

−1
2

(𝑥𝑠
𝐿

)2
]

. (26)
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Fig. 9. Same as Fig. 8, but for a Gaussian distribution as the probability density
function of the random process.

Now, in Eq. (26) the upper-case letter L denotes the standard deviation.
For this case, the characteristic function is again a real function

𝑃𝑋 (𝛽) = exp
(

−2 (𝜋𝐿𝛽)2
)

. (27)

Then, the visibility function of the Lau fringes is

𝛾 (𝐿) = exp

[

−2
(

2𝜋𝑑
𝜆𝑓

)2
𝐿2

]

(28)

In Eq. (28) the upper-case letter L has dimensions of length, and its
variations are measured in millimeters (see Figs. 6, 9 and 10).

Here we note that the values of the visibility function are greater
than one tenth of its maximum value, provided that

𝐿 ≤
(𝜆
5

)

(

𝑓
𝑑

)

. (29)

Again, the result in Eq. (29) may be seen as a tolerance criterion
on the spread of the point sources, along the 𝑥-axis. For a grating with
period equal to 1 mm, a lens with focal length f = 200 mm, and for
𝜆 = 600 nm, we have that L ≤ 24 μm. From the above results we can
infer that one can tailor the visibility variations by selecting a source
suitable composed by a set of mutually incoherent point sources, which
obey a specific PDF. For example, let us consider that one wishes to
obtain visibility variations falling as a linear exponential curve,

𝛾 (𝐿) = exp
[

−8𝜋 𝐿𝑑
𝜆𝑓

]

. (30)

In Eq. (30) the upper-case letter L has dimensions of length, and
its variations are measured in microns. Then, in Eq. (30) the damping
coefficient is equal to 8𝜋d/(𝜆f); which has dimensions of 1/length. The
set of mutually incoherent point sources should have random locations,
following a Lorentzian PDF; that is

𝑝𝑋
(

𝑥𝑠
)

= 1
𝜋

𝐿
(

𝑥2𝑠 + 𝐿2
) . (31)

For a grating with period equal to 1 mm, a lens with focal length f
= 200 mm, and for 𝜆 = 600 nm, we have that L ≤ 24 μm.

In the next section, we analyze the impact of time average on the
visibility of the Lau fringes.

4. Time average OTF

As is depicted in Fig. 11, we consider now that inside the source
plane, a point source moves following a harmonic motion with time
period T and amplitude L. Then, any time the x coordinate of the point
source is

𝑥𝑠(𝑡) = 𝐿 sin
(

2𝜋 𝑡
𝑇

)

. (32)

Trivially, In Eq. (32) the amplitude of the harmonic motion is equal to
L, which has dimensions of length; and angular velocity is 𝜔 = 2𝜋∕𝑇 .

Fig. 10. Same as Fig. 8, but for a Lorentzian distribution.

Fig. 11. Schematics of the optical setup that describes a point source moving
harmonically along the horizontal axis of the source plane.

For the sake of simplicity of our discussion, in what follows we assume
that the point source does not have any motion along the vertical axis.

From Eqs. (6) and (32) we have that the generation of the Lau
fringes can be described by defining the instantaneous OTF

𝐻(𝜇, 𝜈; 𝑡) = 1
2
𝛿 (𝜇) 𝛿 (𝜈)

+1
4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈) exp
[

−𝑖2𝜋 𝐿𝛽 sin
(

2𝜋 𝑡
𝑇

)]

+

+1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈) exp
[

𝑖2𝜋 𝐿𝛽 sin
(

2𝜋 𝑡
𝑇

)]

. (33)

Now, if one applies the Bessel–Jacobi expansion, and by considering
that the Lau fringes are recorded with a detector (which takes a time 𝜏
for gathering the image) then the average OTF is

⟨𝐻 (𝜇, 𝜈)⟩ = 1
2
𝛿 (𝜇) 𝛿 (𝜈) 1

𝜏 ∫

𝜏
2

𝑡=− 𝜏
2

𝑑𝑡+

+1
4
𝛿
(

𝜇 + 2
𝑑

)

𝛿 (𝜈)
∞
∑

𝑚=−∞
𝐽𝑚 (2𝜋 𝐿𝛽) 1

𝜏 ∫

𝜏
2

𝑡=− 𝜏
2

exp
(

−𝑖2𝜋 𝑚
𝑇
𝑡
)

𝑑𝑡+

+1
4
𝛿
(

𝜇 − 2
𝑑

)

𝛿 (𝜈)
∞
∑

𝑚=−∞
𝐽𝑚 (2𝜋 𝐿𝛽) 1

𝜏 ∫

𝜏
2

𝑡=− 𝜏
2

exp
(

𝑖2𝜋 𝑚
𝑇
𝑡
)

𝑑𝑡.

(34)

Next, it is straightforward to show that Eq. (34) becomes

⟨𝐻 (𝜇, 𝜈)⟩ = 1
2
𝛿 (𝜇) 𝛿 (𝜈) +

+1
4

{ ∞
∑

𝑚=−∞
𝐽𝑚 (2𝜋 𝐿𝛽) sinc

[ 𝜏
𝑇
𝑚
]

}

[

𝛿
(

𝜇 + 2
𝑑

)

+ 𝛿
(

𝜇 − 2
𝑑

)]

𝛿 (𝜈) .

(35)
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Fig. 12. Visibility functions as described in Eqs. (37) and (40).

By taking the inverse Fourier transform of Eq. (35), we obtain that
average irradiance distribution of the Lau fringes is

⟨𝐼 (𝑥, 𝑦)⟩ = 1
2
+ 1

2

{ ∞
∑

𝑚=−∞
𝐽𝑚

(

2𝜋 𝐿𝑑
𝜆𝑓

)

sinc
[ 𝜏
𝑇
𝑚
]

}

cos
(

4𝜋 𝑥
𝑑

)

. (36)

Thus, the visibility of the Lau fringes reads

𝛾
(

𝐿; 𝜏
𝑇

)

= 𝐽0

(

2𝜋 𝐿𝑑
𝜆𝑓

)

+ 2
∞
∑

𝑚=1
𝐽2𝑚

(

2𝜋 𝐿𝑑
𝜆𝑓

)

sinc
[

2 𝜏
𝑇
𝑚
]

. (37)

It is apparent from Eq. (37) that the first term is not related to the
time mismatching between the averaging time 𝜏, and the time period
T. We also note that for 𝜏 = 0 the visibility function is equal to unity.
Moreover, from Eq. (37), we recognize that if the ratio 2 𝜏/T is an
integer number, say n, then

𝛾(𝐿; 𝑛) = 𝐽0

(

2𝜋
(

𝑑
𝜆𝑓

)

𝐿
)

. (38)

As is depicted in Fig. 12(a). It is convenient then to set a condition for
eliminating the first term in Eq. (37). To this end, we set

2𝜋 𝑑
𝜆𝑓

𝐿0 = 2.4048. (39)

Under this condition, the visibility of the Lau fringes depends only
on the mismatching between the averaging time 𝜏 and the time period
T. In mathematical terms,

𝛾
(

𝐿0;
𝜏
𝑇

)

= 2
∞
∑

𝑚=1
𝐽2𝑚 (2.4048) sinc

[

2𝑚 𝜏
𝑇

]

. (40)

For visualizing the above results, in Fig. 12(a) we plot the initial
terms of the visibility function, as well as the sum of those terms, when
setting 𝜏 = 0 in Eq. (37). And in Fig. 12(b) we plot Equation (40).

From the previous results, we recognize that the visibility of the
Lau fringes can be exploited as a null test for sensing any mismatching
between the averaging time 𝜏 and the time period T, in a somehow
similar technique to stroboscopic illumination [17].

5. Final remarks

For three different source architectures, we have analyzed the vis-
ibility changes of the irradiance periodic patterns, which are obtained
in the Lau effect. If you will, in the noncoherent Talbot effect.

We have related the visibility variations, of the Lau fringes, with
the path that follows a very narrow slit, under incoherent illumination.
We have defined a visibility complex function that varies with the
geometrical bends of a slit source.

We have indicated that one can exploit the above result for setting
a test that verifies the straightness of a slit source, under noncoherent
illumination. We have reported some numerical simulations.

Next, we have related the visibility of the Lau fringes with the
random locations of a set of mutually incoherent point sources. We have
shown that the characteristic function, of the random process, specifies
the visibility function of the Lau patterns.

We have also discussed the visibility variations, in the Lau patterns,
which are caused by taking long exposure pictures of point source that
moves periodically along the horizontal axis of the source plane. We
have defined a time average OTF for finding an analytical expression
that relates the visibility with the mismatch between the integration
time 𝜏 and the period of the harmonic motion.

In a somehow similar technique to stroboscopic illumination, we
have suggested a null test for sensing any mismatches between the
averaging time 𝜏 and the time period T.

Acknowledgment

We are indebted to the reviewer for her/his sound comments; which
were very helpful for improving our manuscript.

References

[1] A.A. Michelson, Studies in Optics, The University of Chicago Press, Chicago,
1927, p. 31.

[2] F. Zernike, Physica 5 (1938) 785–795.
[3] H.H. Hopkins, Proc. R. Soc. Ser. A 208 (1951) 263–277.
[4] G.L. Rogers, Noncoherent Optical Processing, John Wiley, 1977, p. 106.
[5] E. Lau, Ann. Phys. 6 (1948) 417.
[6] Jürgen Jahns, Adolf W. Lohmann, Opt. Commun. 28 (3) (1979) 263.
[7] R. Sudol, Brian J. Thompson, Opt. Commun. 31 (2) (1979) 106.
[8] F. Gori, Opt. Commun. 31 (1979) 4.
[9] K.-H. Brenner, A.W. Lohmann, J. Ojeda-Castaneda, Opt. Commun. 46 (1) (1983)

14.
[10] G.J. Swanson, E.N. Leith, J. Opt. Soc. Amer. A 4 (1985) 789.
[11] Jorge Ojeda-Castañeda, Jorge Ibarra, Juan Carlos Barreiro, Opt. Commun. 71 (3,

4) (1989) 151–155.
[12] Jorge Ojeda-Castañeda, E. Enrique Sicre, Opt. Commun. 59 (2) (1986) 87.
[13] Pedro Andrés, Jorge Ojeda-Castañeda, Jorge Ibarra, Opt. Commun. 60 (4) (1986)

206.
[14] Jorge Ojeda-Castañeda, Pedro Andrés, Jorge Ibarra, Opt. Commun. 67 (4) (1988)

256.
[15] S. Chitraleka, K.V. Avudainayagam, S.V. Pappu, Appl. Opt. 29 (1990) 125.
[16] B.R. Frieden, Probability, Statistical Optics, and Data Testing, Springer-Verlag,

1991, pp. 218–224.
[17] J.S. Harris, R.L. Fusek, J.S. Marcheski, Appl. Opt. 18 (1979) 2368–2371.

6

http://refhub.elsevier.com/S0030-4018(19)30672-8/sb1
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb1
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb1
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb2
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb3
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb4
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb5
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb6
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb7
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb8
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb9
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb9
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb9
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb10
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb11
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb11
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb11
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb12
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb13
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb13
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb13
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb14
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb14
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb14
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb15
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb16
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb16
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb16
http://refhub.elsevier.com/S0030-4018(19)30672-8/sb17

	Lau visibility sensor
	Introduction
	Deterministic OTF and slit distortions 
	Ensemble average OTF
	Time average OTF
	Final remarks
	Acknowledgment
	References


