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By using an effective transfer function, one can describe conveniently the nonlinear mapping between an input thin
transparent structure and its image irradiance distribution. This effective transfer function is useful for making
sound comparisons between several spatial filters employed for phase rendering. Here, we unveil three noncon-
ventional Schlieren techniques, which employ absorption masks whose amplitude distributions are described by
square root monomials, by sigmoidal functions, or by off-axis Gaussian functions. We apply the effective transfer
function for analyzing the similarities between the proposed masks and other Schlieren techniques. ©2020Optical

Society of America

https://doi.org/10.1364/AO.387370

1. INTRODUCTION

For several applications in microscopy, holography, and optical
testing, it is extremely useful to be able to visualize, as image irra-
diance variations, the presence of transparent structures.

One can render visible the presence of phase-only variations
by using suitable filtering masks, for example, dark background
imagery [1], the Foucault knife-edge [2], Toepler [3], Kastler
[4] and Wolter [5] edge techniques, the amplitude modulation
technique [6], the Lyot test [7], and Zernike’s phase contrast
method [8]. An interesting square root technique has been
reported [9].

It is not so well known that an effective transfer function can
describe the mapping from a thin transparent structure into
image irradiance distributions [10–13]. This effective transfer
function is useful for analyzing and classifying several spatial
filters as members of the Schlieren techniques [14,15].

On the other hand, Jacquinot coined the word apodization
for describing the use of spatial filters that reduce the sidelobes
of the impulse response [16]. As a secondary effect, apodization
spatial filters broaden the central lobe of the impulse response
[17,18]. It is relevant to note that by reducing the sidelobes and
widening the central lobe, classical apodizers can be applied
for broadening the axial impulse response, and therefore for
extending focal depth [19–21].

Here, our aim is to unveil the use of three nonconventional
Schlieren techniques, whose amplitude distributions are
described by square root monomials, by sigmoidal functions, or
by off-axis Gaussian mask. These masks are able to render visible
phase variations with apodizing effects. We apply the effective
transfer function for numerically evaluating the characteristics

of our proposals and for analyzing their similarities with other
Schlieren techniques.

For the sake of completeness of our proposal, in Section 2,
we briefly revisit the basics of the effective transfer function. For
the sake of clarity of our description, we use as input pattern a
thin phase, sinusoidal grating. In Section 3, we discuss the use of
three nonconventional masks for rendering visible these phase
variations. We report numerical graphs and novel formulas
describing the effective transfer functions. In Section 4, we ana-
lyze the similarities of our proposed masks with other Schlieren
techniques. In Section 5, we summarize our contribution.

2. EFFECTIVE TRANSFER FUNCTION

In Fig. 1(a), we show schematically the use of a coherent optical
processor for rendering visible phase structures. In what follows,
we discuss a simple model for describing this type of image for-
mation process.

To this end, we consider a 1D model, and we employ as
the input transparency a thin phase, sinusoidal grating. For
a generalization of the current simple approach, please see
Refs. [12,13].

In mathematical terms, at the input plane, the complex
amplitude distribution is

u0(x )= exp
[
i 2π

(a
λ

)
sin
(

2π
x
d

)]
. (1)

In Eq. (1), the maximum value of the optical path difference
is denoted with the lowercase, Latin letter a. The lowercase,
Greek letter λ denotes the wavelength of the monochromatic
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radiation. And, we represent the period of the phase grating with
the lowercase, Latin letter d .

By assuming that the values of the optical path difference are
very small as compared withλ, a � λ, the complex amplitude in
Eq. (1) can be expressed as

u1(x )= 1+ i 2π
(a
λ

)
sin
(

2π
x
d

)
. (2)

At the Fraunhofer plane, the complex amplitude distribution
is obtained by taking the Fourier transform of Eq. (2), which is

U1(µ)= δ(µ)+
(
π

a
λ

) [
−δ

(
µ+

1

d

)
+ δ

(
µ−

1

d

)]
.

(3)

In Eq. (3), we use the lowercase Greek letter µ for denoting
the spatial frequency, at the Fraunhofer plane. Just behind
the spatial filter, located at the Fraunhofer plane, the complex
amplitude distribution is

U2(µ)= P (µ) U1 (µ) . (4)

In Eq. (4), we denote the complex amplitude transmittance of
the generalized pupil function as P (µ).

Hence, by combining Eqs. (3) and (4) and by taking the
inverse Fourier transform of the resultant combination, we
obtain the complex amplitude distribution at the image,

Fig. 1. Schematics of the optical setups for rendering visible trans-
parent structures as image irradiance variations. In (a), we show a
classical optical processor with an asymmetric mask at the Fraunhofer
plane and a square law detector at the image plane. In (b), we depict the
use of an effective transfer function, which describes conveniently the
nonlinear mapping between thin phase variations and image irradiance
variations.

u2(x )= P (0)+
∫
∞

−∞

P (µ)U1(µ) exp(i 2π xµ)dµ. (5)

Now, it is convenient to define the normalized irradiance
distribution as

I (x )=
|u2(x )|2

|P (0)|2
. (6)

By substituting Eq. (5) in Eq. (6), we obtain

I (x )= 1+
(

2π
a
λ

) ∫ ∞
−∞

E f f (µ)9(µ) exp(i 2π xµ)dµ.

(7)
In Eq. (7), we define the effective transfer function as

E ff(µ)=
1

|P (0)|2
[P ∗(0)P (µ)− P (0)P ∗(−µ)]. (8)

As depicted schematically in Fig. 1(b), the effective transfer
function in Eq. (8) represents the nonlinear mapping (including
the square law detector) from the input phase variations into
the image irradiance distributions. In what follows, we apply
the above useful formulation for unveiling the use of three
nonconventional Schlieren techniques.

3. NOVEL SCHLIEREN MASKS

Schlieren techniques employ spatial filters that have asym-
metrical, real transmittances. Consequently, the effective
transfer function, in Eq. (8), describes the odd component of the
asymmetrical function. In mathematical terms,

E ff(µ)=
1

|P (0)|
[P (µ)− P (−µ)]. (9)

The result in Eq. (9) emphasizes that the effective transfer
function is a scaled version of the odd part of the generalized
pupil function P (µ).

In Fig. 2, we depict the usefulness of employing the effective
transfer function, for making comparisons between related
classical Schlieren techniques. The lines in red describe the
amplitude transmittance of the Foucault knife-edge test.

In Fig. 2, we plot in blue a ramp function representing the
amplitude transmittance of a mask with linear absorption.

And, also in Fig. 2, in black, we plot the amplitude transmit-
tance of a high light throughput version of the amplitude modu-
lation microscopy.

Now, for describing our current proposals, we consider the
use of masks that have amplitude transmittances proportional
to square root monomials, inside a rectangular pupil aperture.
It is convenient to represent the variations inside the pupil by
employing a rectangular window. We denote with the upper
case, Greek letter �, the cutoff spatial frequency. Hence, the
amplitude transmittance of the square root monomials reads

Pn(µ)=

∣∣∣∣( µ

2�
+

1

2

)∣∣∣∣ 1
2n

rect
( µ

2�

)
. (10)

In Eq. (10), the lowercase, Latin letter n stands for a positive,
integer number greater than or equal to unity.
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Fig. 2. Amplitude transmittance of the certain Schlieren tech-
niques. In (a), we show the generalized pupil functions. In (b), we plot
their related effective transfer functions.

In Fig. 3, we plot the functions Pn(µ) as well as the functions
Pn(−µ), for n = 1, 2, 3, 4.

In Fig. 4, we plot the amplitude transmittance of the effective
transfer functions for this type of mask. It is apparent from Fig. 4
that the effective transfer works as a high frequency enhancer.

Specifically, for n = 1, the effective transfer function
closely relates to the amplitude transmittance of a spatial
filter implementing a first-order derivative.

Next, we consider absorption masks whose amplitude trans-
mittance profile is a sigmoidal function,

P (µ)=
exp

[
b µ
�

]
1+ exp

[
b µ
�

] rect
( µ

2�

)
. (11)

In Eq. (11), the lowercase Latin letter b denotes a dimension-
less width parameter, which specifies the variation rate of the sig-
moidal function.

Fig. 3. Graphs depicting the amplitude transmittances of the square
root monomials, Pn(µ) in Eq. (10), as well as the mirror symmetric
functions Pn(−µ).

Fig. 4. The effective transfer functions generated by using the
square root monomials in Eq. (10).

In Fig. 5, we plot the amplitude transmittance of the pupil
functions of the sigmoidal functions, for different values of the
width parameter b.

Now, the effective transfer function reads

E ff(µ)= 4
sinh

[
b µ
�

]
1+ cosh

[
b µ
�

] rect
( µ

2�

)
. (12)

In Fig. 6, we plot the amplitude transmittance of the effective
transfer function in Eq. (12), for different values of the dimen-
sionless width parameter b.

It is apparent from Fig. 6 that as the value of the width param-
eter increases, then the effective transfer functions resemble
those effective transfer functions associated to the Foucault
knife-edge. However, due to smooth variations of the sigmoidal
functions, one expects to obtain some apodizing effect on the
image irradiance distributions.
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Fig. 5. Amplitude transmittances of the sigmoidal masks, P (µ)
in Eq. (11), and the functions Pn(−µ), for several values of the width
parameter b.

Fig. 6. Amplitude transmittance of the effective transfer function in
Eq. (12) for the width parameter b = 2, 6, and 8.

Next, we consider absorption masks whose amplitude trans-
mittance profile is an off-axis Gaussian function. For this case,
the generalized pupil function is

P (µ)= exp

[
−c
(µ
�
− 1

)2
]

rect
( µ

2�

)
. (13)

In Eq. (13), the lowercase Latin letter c denotes a dimension-
less parameter, which specifies the half-width of the Gaussian
function. In Fig. 7, we plot the amplitude transmittance of the
pupil functions of the off-axis Gaussian functions for different
values of the half-width parameter c .

From Fig. 7, one can recognize that as the dimensionless fac-
tor increases, the off-axis Gaussians tend to attenuate the low fre-
quency content.

Fig. 7. Amplitude transmittances of the off-axis Gaussian func-
tions, P (µ) in Eq. (13), as well as their mirror functions Pn(−µ), for
several values of the half-width parameter c.

Fig. 8. Amplitude transmittance of the effective transfer function in
Eq. (15).

For this type of mask, the effective transfer function reads

E ff(µ)= exp

[
−2c

(µ
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)2
]
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)
rect
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)
.

(14)

In Fig. 8, we show the graphs of this type of effective transfer
function.

It is apparent from Fig. 8 that as the value of the half-width
parameter increases, the effective transfer functions reduce
strongly the low frequency content of the phase structure.

Low values of the half-width parameter will be useful for
obtaining an apodized version of Foucault knife-edge.
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For relating our previous results in a succinct manner, we dis-
cuss the characteristics of a selection of the proposed masks.

4. RELEVANT COMPARISONS

For making useful comparisons, in Fig. 9, we plot the effective
transfer functions of a sigmodal function with dimensionless
parameter b = 8. And, in orange, we plot the effective transfer
function of the off-axis Gaussian mask with dimensionless
half-width c = 2.

Furthermore, in Fig. 9, we are showing also the effective trans-
fer functions of a ramp function (in a continuous black line), as
well as the effective transfer function of the Foucault knife-edge
(in a broken black line).

We note that the sigmoidal function is good apodized version
of the Foucault knife-edge. Hence, the sigmoidal function is
here identified as the best choice between the current proposed
masks.

For obtaining another viewpoint on this choice, in Fig. 10, we
simulate numerically the irradiance distributions on the image

Fig. 9. Graphical comparisons of the effective transfer functions,
which are generated by employing the proposed Schlieren masks.

Fig. 10. Numerical simulations of the modulation variations,
which are caused on the image irradiance by the square root mask
(at the left-hand side, curve in blue) and by the ramp mask (at the
right-hand side, curve in black).

Fig. 11. Numerical simulations of the modulation variations,
which are caused on the image irradiance by the sigmoidal mask (at the
left-hand side, curve in red) and by the off-axis Gaussian mask (at the
right-hand side, curve in orange).

of the thin phase grating. For our simulations, we assume that
the spatial frequency of the grating (1/d ) is one-tenth of the
value of the cutoff spatial frequency �.

At the left-hand side of Fig. 10, we show the irradiance varia-
tions.

At the left-hand side of Fig. 10, we show the irradiance varia-
tions (in blue) caused by using the square root monomial, with
n = 1.

At the right-hand side of Fig. 10, we show the irradiance varia-
tions (in black) caused by using linear (ramp) absorption mask.

At the left-hand side of Fig. 11, we show the irradiance
variations (in red) generated by the used a sigmoidal function
with b = 8. And at the right-hand side of Fig. 11, we plot the
irradiance variations (in orange) obtained by using an off-axis
Gaussian mask with c = 2.

It is apparent from Figs. 10 and 11 that the image irradiance
distributions have the highest possible modulation, when using
the sigmoidal mask, with dimensionless parameter b = 8.

5. CONCLUDING REMARKS

We have employed an effective transfer function for describing
the nonlinear mapping between an input thin transparent struc-
ture and its image irradiance distribution.

By using this mathematical tool, we have unveiled and ana-
lyzed three nonconventional Schlieren techniques. We have
recommended the use of masks with sigmoidal amplitude vari-
ations, as a good choice for substituting with apodizing effects,
and the classical knife-edge technique for rendering visible thin
phase variations.
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