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We identify the necessary and sufficient conditions for controlling the presence of optical vortices. Next, we
unveil the use of two different pairs of transparent masks, which are useful for governing the presence of optical
vortices. The elements of the first pair have quadratic helical variations. The elements of the second pair have
cosinusoidal helical variations. In both cases, one element of the pair has a complex amplitude transmittance
that is equal to the complex conjugate of the other element. By introducing an in-plane rotation, between
the elements of a pair, one can control the presence of an optical vortex. We apply the previous results for

detecting angular misalignments.

1. Introduction

For their inherent physical characteristics and for its potential uses,
optical vortices have attracted the attention of several researches [1—
10].

Helical modulations on Bessel beams have been used for linking
the Eigensolutions of the scalar wave equation with the Montgomery’s
analysis of the self-imaging phenomenon [11,12].

As optical sensors and as imaging devices, helical phase variations
are useful for setting a test for optical alignment [13], for implementing
a coronagraph [14], for proposing the method spiral phase contrast
microscopy [15], and for tuning diffractive lenses [16].

At this point, it is relevant to note that conjugated phase refractive
elements were suggested for implementing varifocal lenses [17]. This
optical procedure adds flexibility when designing nonconventional lens
systems [18]. And the same procedure can be suitably translated for
designing an optical method that governs the half-width of a Gaussian
masks [19].

A pair of refractive, vortex masks are useful for controlling the
optical path difference of axicons, lenses and axilenses [20]. Helical
filters can be thought of as free-form optical pairs for implementing
tunable apodizers [21] and for proposing novel spatial filters [22]; as
well as for setting aberration generators in tandem [23] and other types
of optical devices [24].

We note that helical phases are related to phase singularities that
are implemented by using computer generated holograms [25] and fork
gratings [26].

Here, we identify the necessary and the sufficient conditions for con-
trolling the presence of optical vortices. Next, we present two different
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sets of optical masks, which are useful for governing the presence of
optical vortices. To that end, we employ a pair of transparent masks
with helical phase variations. The complex amplitude transmittance of
one element, of the proposed pair, is the complex conjugate of the other
element. We show that by introducing an in-plane rotation between
the elements, of the proposed pairs, one can control the presence of an
optical vortex.

For the first set of optical masks, we use transparent masks that have
quadratic helical variations. For the second set of optical masks, we
employ masks that have cosinusoidal helical phase variations. These
results allow us to propose an optical method for detecting angular
misalignments.

In Section 2, we use McCutchen theorem [27,28] for relating zero
values of the axial irradiance distribution with the zero angular aver-
ages over an optical mask. This connection allows us to identify the
necessary and sufficient conditions for controlling the presence of an
optical vortex. In Section 3, we describe the use of a pair transparent
masks, which have quadratic helical variations. In Section 4, we extend
our discussion to the use of a pair transparent masks, which have
cosinusoidal helical variations. In Section 5, we suggest an application
of our previous results, for setting an optical detector that senses
angular misalignments. In Section 6, we summarize our contribution.

2. Axial irradiance distribution and angular averages

In Fig. 1 we show the schematics of the optical setup under dis-
cussion. In the image plane the cartesian coordinates (x, y, z) are
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Fig. 1. Schematics of the optical setup for controlling the presence of optical vortices.

expressed as the cylindrical coordinates (r, 6, z). Next, for describing
the use of the optical processor, we evaluate the 3-D complex amplitude
point spread function (PSF), p(r,0, z; #). In our current description, we
restrict our discussion to the paraxial regime. That is, for describing the
variations beyond the image plane, the generalized pupil function only
incorporates a quadratic phase factor. Hence, in the paraxial regime,
the PSF is obtained by evaluating the integral

Q 2r
p(r.0,z;p) =/ / P(p.o;8)
0 0

X exp{iZn [—%p2+rp cos(€—(p)]} pdpde. (€))]

In Eq. (1) the Greek letter beta, #, is parameter that represents a rota-
tion angle, at the Fraunhofer plane. At this plane, the polar coordinates
are (p, ¢). They are here used instead of the spatial frequency, cartesian
coordinates (u, v). We can represent a pupil aperture, with maximum
radius p = 2, as the circular function

circ(£)={ 1 if 0<p<Q
Q 0

if p>Q :
Furthermore, as in the integrand of Eq. (1), we denote as P(p, ¢; p) the
overall complex amplitude transmittance of the pupil function. That is,

2= u+ V2 (2)

P.gip) = Qi) cire (£). 3

In Eq. (3), we denote the complex amplitude transmittance of the pair
of transparent masks as

0(:p) =0, <¢+§>Ql*<cp—§). @

If we evaluate Eq. (1) along the optical axis, of the system depicted in
Fig. 1, we obtain

=0 |27

0? 27
p(o,o,z;ﬂ>=fr/ [i/ ) d«p] exp|-izdzp’]d (7). ()
0

In Eq. (5), it is convenient to recognize the following angular average

2r
<Q(ﬂ)>=[2i / 0P drp]. ®)
7 Jp=0

Hence, by using Egs. (5) and (6) we obtain that the normalized,
axial irradiance distribution is

1p(0,8,z; p)I?

1(z;p) = )
|22

) @)
. AQ

1) = {Q (M) sine? <Tz) :

From Eq. (7), and as depicted at the left-hand side of Fig. 2, we have
the following sufficient condition. If the modulus of the angular average
is equal to zero, then the axial irradiance is equal to zero at any value
of z. In mathematical terms,

If Q)| =0 then I(z:p)=0. ®

Next, we explore the possibility that Eq. (8) also expresses a neces-
sary condition. To this end, let us assume that there are certain optical
masks, which are able to generate zero axial irradiance, but these masks
do not have zero angular average. This condition is depicted at the
left-hand side of the Venn diagram in Fig. 2; as the existence of a set
As.

In mathematical terms, our testing hypothesis is the following

If KO (B))| # 0 is it possible that I (z;p)=0? 9

From Egs. (8) and (9), and from the right-hand side of Fig. 2, we
have that if the angular average is different from zero, at z = 0, the axial
irradiance is also different from zero. Thus, the necessary and sufficient
conditions for zero axial irradiance at z = 0, is that the angular average
must be equal to zero. In mathematical terms,

If KQW) #0 then I(z=0;8)+#0. 10)

And therefore, I(z;f) = 0 does not necessarily implies |(Q (f))| = O .
However, I (z = 0; f) = 0 necessarily implies |{Q (8)}| = 0.

Consequently, in what follows we employ Egs. (8) and (10) for iden-
tifying the presence of an optical vortex, as the necessary and sufficient
conditions I(z = 0; p ) = 0.

In a lax manner, one can say that if a phase mask is able to generate
a zero angular average, at z = 0, then the mask generates an optical
vortex.



C.M. Gomez-Sarabia, L.M. Ledesma-Carrillo and J. Ojeda-Castafieda Optics Communications 470 (2020) 126047

A, = Zero Angular Average
A2
A, = Zero Axial lrvadiance
Az

(A3
‘ A, = Nonzero Angular

Average

. - - A, i 4 necessary condition for 4,
A, LS a sutficient condition for A,

It means that if we don't have A,

In other words, A, guarantees A, then we won't have 4
y

Fig. 2. Venn diagram for illustrating the sufficient and necessary conditions in Eq. (8).
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Fig. 3. Quadratic helical phase variations. In (a) we show a 3-D graph. In (b) we depict a 2-D contour plot. And in (c) we display the associated interferogram.

3. Quadratic helical phase variations A
L=87r—
Here we consider the use of a pair of transparent masks, each of a
them has a quadratic helical variation. Then, the complex amplitude A ﬁ
transmittance of a single element is ,B =67 ; /
2
0, (@) =exp [izn ($) (=) ] an

In Eq. (11), we denote with the lower-case letter “a” the optical
path difference of the optical masks; and the Greek letter 1 is used
for denoting the wave length of the optical radiation. In Fig. 3, we
display the phase delay and the interferogram of the transparent profile
in Eq. (11).

From Egs. (4) and (11) we obtain that for the pair of transparent
masks, with quadratic helical phase, the overall the complex amplitude
transmittance reads

y7i

owm=exnli (9) ()] 12)
A 2z
The interferogram, between a plane wavefront and the phase delay ﬁ =0
in Eq. (12), is shown in Fig. 4 for several values of the angle beta.
From Egs. (6) and (12), it is straightforward to show that I (z = 0; Fig. 4. Irradiance distributions of the interferograms obtained by using a plane wave,
) = 0. For further visualizing the influence of the rotation angle g, as a reference beam, and the phase variations in Eq. (12).

on Eq. (12), we use polar diagrams in Fig. 5. As a reference phase, we
depict a linear helical phase variation as a black, broken curve. After
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Fig. 5. Polar display of the quadratic, helical phase variations. In (a) # =0; in (b) p# = #z/5; and in (¢) g = 2x/5. In broken black lines, we depict a linear helical phase that is
used as a reference phase. In broken blue curves, we describe the quadratic helical phase, after introducing a left-hand rotation by an angle /2. In continuous blue curves, we
depict the phase variations, after introducing a right-hand rotation by an angle /2. And the red curves show the overall helical phase.. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Graphs of the squared angular averages, as in Eq. (13), for several values of
the optical path difference, a (in units of ).

introducing a left-hand rotation, by an angle /2, on the first element
of the pair — Q,(¢ + #/2) in Eq. (11) — the phase changes are depicted
in the blue, broken lines. By introducing a right-hand rotation, by an
angle f/2, to the second element of the pair — Q,*(¢ - /2) in Eq. (11)
- the phase changes are described by the solid blue lines. The red
curves show the overall helical phase delay, caused by the two elements
working as a pair.

It is apparent from Fig. 5(a) that for § = 0, the overall phase
(red curve) is equal to zero for any value of the polar angle ¢. In
Fig. 5(b), we set f = z/5. In this later case, the red curve approaches
the reference linear, helical phase; which is depicted with broken black
lines. Next, in Fig. 5(c), we set § = 2z/5. Now, the red curve reaches
the reference linear, helical phase.

Now, we recognize that by using Eqs. (6) and (12), the squared
modulus of the angular average is

QNI =sinc? ().

In Fig. 6, we plot the square values of the angular average, in Eq. (13),
for several values of the optical path differences.

Thus, from Eq. (13) and Fig. 6, we have that for generating an
optical vortex the condition is

13)

ﬂ=m£7r; for m==+1,42,... 14
a

For many practical applications, we note that for thick optical masks
with a = 3000 4, the angular increments are equal to 48 = = / 3000 (=

0.03°), which is indeed a rather small rotation angle. This value maybe
useful for detecting small rotations between the elements of a pair. Of
course, this high sensitivity is reduced for a transparent element with
masks that have a path difference of a = 300 A. Then, one can generate
an optical vortex with angular increments of 48 =z / 300 (= 0.3°).

In Fig. 7, we show the irradiance PSF’s that are generated by using
the propose quadratic helical phase elements, as a pair. In Fig. 7(a)
we have that f = 0. In Fig. 7(b) we set # = z/200. And in Fig. 7(c),
p = n/50.

It is apparent from Fig. 7 that indeed, one can control the presence
of an optical vortex by introducing an in-plane rotation between the
elements of the proposed pair. Next, we analyze another possibility for
governing an optical vortex.

4. Cosinusoidal helical phase variations

Now, we consider the use of a pair of transparent masks with cos-
inusoidal helical phase variations. In this case, the complex amplitude
transmittance of a single element is

0, (@) =expi27 (5) cos ()] .

In Eq. (15), we denote again with “a” the optical path difference;
and the Greek letter 4 denotes the wave length of the optical radiation.

In Fig. 8(a), we plot, as a 3-D graph, the cosinusoidal helical phase
variations in Eq. (15). In Fig. 8(b), we show a contour map of the same
helical phase variations. And in Fig. 8(c), we display the interferogram
of the proposed phase.

From Egs. (4) and (15) we have that the overall complex amplitude
transmittance is

O (p) =exp [—i27z <% sin <§>> sin ((p)] .

In Fig. 9 we plot the variations of the phase delay in Eq. (16a), which
is expressed as

vig:p=(5)sin (
The diagram in Fig. 9a is a plot in Cartesian coordinates (¢, ), for a
=100 4; and for three different values of the rotation angle beta. The
diagram Fig. 9b is a plot in polar coordinates (v, @), again with a =
100 4; and few set = /10, p = /5, and for p == /2.

As in the previous section, for visualizing the influence of the rota-
tion angle beta, in Fig. 10 we use polar diagrams. In black broken lines,
as a reference phase, we depict a sinusoidal helical phase variation.
Then, after introducing a left-hand rotation, by an angle /2, to the first
element of the pair — O,(¢ + f/2) as in Eq. (15) — the phase changes
are depicted in blue, broken lines. By introducing a right-hand rotation,
by an angle /2, to the second element of the pair - Q,*(¢ - #/2) as in
Eq. (15) - the phase changes are described by the solid blue lines. The
red curves show the overall helical phase, caused by using the pair of
cosinusoidal helical phase masks.

(15)

(16a)

5 (16b)

> sin (@) .
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Fig. 7. Irradiance PSF’s when using a pair of quadratic helical phase elements, with optical path difference a = 300 A. In (a) the rotation angle is # =0, in (b) the rotation angle
is p = x/200, and in (c) g = n/50.
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Fig. 8. Cosinusoidal helical masks for an optical path difference a = 20 4. In (a) we show a 3-D plot of the cosinusoidal, helical phase variations; in (b) we display a contour

graph of the same phase distribution; and in (c) we show the associated interferogram.
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Fig. 9. Phase delays, as in Eq. (16b), for both Cartesian coordinates (¢, y) and for polar coordinates (v, ¢). We set a = 100 4; in black lines g = = /10, in blue lines p =r /5,
and in red lines g =z /2.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Polar displays of the cosinusoidal helical phase variations. As a reference phase, in broken black lines, we depict a sinusoidal helical phase. In broken blue lines, we
show a cosinusoidal helical phase, after a left-hand rotation by an angle /2. In continuous blue lines, we describe the cosinusoidal helical phase variations, after a right-hand
rotation by an angle /2. And in red curves we display the overall helical phase delay, caused by the pair of elements; each of them with a cosinusoidal helical phase. In (a)
p=0; in (b) p=x/5; and in (c) p =2x/5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Graphs of the Bessel function, of the first kind and zero order, and its square values; as in Eq. (17). We set the optical path a = 1/200.

In Fig. 10(a), we set # = 0. Then, for any value of the polar angle
@, the overall phase (red curve) is equal to zero. In Fig. 10(b), g = n/5,
we note that the red curve starts to follow a path that is similar to
the sinusoidal, helical phase in broken black lines. And as depicted in
Fig. 10(c), for p = 2x/5, the red curve nears the sinusoidal, helical
phase in broken black lines.

Next, we recognize the conditions for governing the presence of an
optical vortex. It is straightforward to show from Egs. (7) and (16a)
that

QB =72 [4zz (%)sin(é)]. an

In Eq. (17) J,(.) represents the Bessel function of the first kind, and
zero order. In Fig. 11, as blue curve, we display the changes of the
Bessel function, of the first kind and zero order, by setting the optical
path a = 1/200. Also, in Fig. 11, we depict the function in Eq. (17). The
graphs show that the zero crossing, of the curves, do occur at rather
small values of the rotation angle g. Hence, the presence of zero axial
irradiance maybe used for evaluating rotation angles.

If we denote the zero crossings, of the Bessel function of zero order,
as

o, = {2.4048,5.5198,8.6537, ...} (18)

then for generating an optical vortex one requires that
. A
=2 (— ) ) 19
B = 2arcsin Teaom 19)

Hence, if a = 300 4, for generating an optical vortex the first
value of the rotation angle is # = 1/500; and the second value of the
rotation angle is § = 4.4/100. In Fig. 12, we show the irradiance PSF’s,
which are generated by using the propose cosinusoidal helical phase
elements; working as a pair, for § = 0, § = z/100 and p = z/50,
respectively.

From Fig. 12, it is apparent that one can govern the presence
of an optical vortex by controlling the in-plane rotations of a pair,
of cosinusoidal helical phase masks. In what follows, we apply the
previous results for designing an optical sensor of in-plane rotations.
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(c)

L1

Fig. 12. Point spread functions when using a pair of cosinusoidal helical phase elements, with optical path difference a = 300 . In (a) g = 0; in (b) p = #/100; and in (c)

p = n/50.

Fig. 13. Sketches showing the composition of two annular regions, which can be rotated independently. Since each annulus has a different optical path difference, they are here
depicted in two different colors.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Detection of angular misalignments

As depicted in Fig. 13, we consider now that each member (of
a helical pair) has two annular sections; which can in-plane rotate
independently.

For the first element of the pair, the complex amplitude transmit-
tance at the first annulus is

P; (p, ;€)= circ (é) 0; (). (20)

In Eq. (20) we take into account a reduction in the radius of the
inner disk as follows. We denote with the Greek letter ¢, a real positive
number that is less than unity. That is 0 < £ < 1. Then, in Eq. (20) the
maximum value of the radius is reduced from Q2 to £ Q. In accordance
to Eq. (2), we have that

. PN_[J 1 if0<p<e
Cer(E)—{ 0 21)

if p>eQ.

Now, by using Eq. (21) we have that at the outer annulus, of the first
element of the pair, the complex amplitude transmittance is

Py(p.0:0) = [eire (£ ) ~cire ()] 04 (@). (22)

Hence, by taking into account the contribution of the inner disk and
that of the outer disk, the first mask has the following complex ampli-
tude transmittance is

P(p,p;¢€) = circ (EL.Q) O3 (p) + [circ (g) — circ (g%)] O,s(p). (23)

As in the previous sections, the complex amplitude transmittance of the
second mask is the complex conjugate of Eq. (23).

Next, we form a pair by placing the first mask in close contact with
the second mask. After introducing an in-plane rotation, say by an angle
B, between the masks the overall complex amplitude transmittance is

P(p,(p+§;£> P x (p,(p—é;e)
:circ(ELQ)Q3 <(p+ §>Q3 * <go— g) 24)

fere(5)-are (2] 01 (042 0ue (o-2)

For this new pair the complex amplitude distribution along the optical
axis, in Eq. (7), becomes

ne2Q? > . <£2[22
2 Az | sinc

p(0,86,z; )

2 exp <—,~ A z) (05 (B

14€2) Q2
+7x (1 —82) Q*exp <—i%ﬂz> 2%
(1—52).(22
X sinc — Az ) {Q4(B).
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In Eq. (25) the functions of g are the angular averages (Qs (f)) and
(Q4 (B)). Consequently, by assuming that (Q; (8)) and (Q, (8)) are real
functions, the normalized axial irradiance distribution is

202
1(z;p) = ¢*sinc? <%z> {03 (ﬁ))|2

A(1-¢2) @2

+(1=e)’sine? ( ————=z ) [@.®I
(26)
+2¢2 (1 - 22)2 sinc < /162292 z)
[ A(1-¢%) 22
xsine| ————z (03 () (04 (B)) -

It is clear from Eq. (26) that if the two angular averages are zero, then
we have an optical vortex. In particular, if the two annular regions have
quadratic helical phase variations, the condition reads

(03(B) =0=sinc? (ZLp
3 (lar/l ) @27
<Q4<ﬂ>>=0=sinc2(”—jﬂ).

As before, in Eq. (27) the lower-case Latin letters a; and a, stand
for the optical path differences of each quadratic, helical phase. Admit-
tedly, the result in Eq. (27) accepts other possibilities. However, these
other possibilities are outside our current scope. Next, we apply the
result in Eq. (27).

Let us consider that the inner annulus has an optical path with twice
the value of the outer annulus. In mathematical terms, if a; = 2a, =
4004. Then, one could switch-on a vortex if the rotation angle, of the
inner annulus, is g, = mr;[o' And, one could switch-on a vortex if the
rotation angle, of the outer annulus, is g, = nz”m. Both requirements
are satisfied if one selects m = 2 and n = 1.

Thus, for obtaining a zero-irradiance value at the optical axis, the
rotation angle of the inner annulus must be twice the value of the
rotation angle of the outer annulus.

This strong simultaneous condition can be used in two stages test.
First, the outer annulus is rotated by an angle g, = 2’[% Second, for
verifying the correctness of f,, one needs to rotate the inner disk by an
angle f; = —=. If both values are right, then an axial irradiance with

400
zero value verifies the correctness of the rotation angles.

6. Final remarks

We have discussed the necessary and the sufficient conditions for
controlling the presence of optical vortices. Along our discussion, we
have unveiled the use of two different pairs of helical phase masks,
which can govern the presence of an optical vortex.

We have stated that the complex amplitude transmittance of one
element, of the proposed pair, is the complex conjugate of the other
element. Then, we have shown that one can control the presence of an
optical vortex, by introducing an in-plane rotation, say by an angle g,
between the elements of the pair.

We have identified two suitable pairs of helical phase masks. The
first set, the elements of the pair have quadratic helical variations. In
the second set, the elements of the pair have cosinusoidal helical phase
variations.

In both cases, we have associated the presence of an optical vortex
as the capability of generating zero irradiance, at z = 0 on the optical
axis of an optical processor. We have reported two analytical formulas
that describe the production of zero axial irradiance, in terms of the
rotation angle f.

The reported formulas are useful for identifying suitable optical
path difference and suitable rotation angles, for generating an optical
vortex. We have evaluated numerically some PSF, of the proposed
pairs, for verifying that one can control the presence on an optical
vortex.

Optics Communications 470 (2020) 126047

Finally, we have described an optical device that senses angular
misalignments. This novel device uses elements with helical phase, over
two independent annular regions. Each annular region has a different
optical path difference. We have reported an analytical formulation of
this proposal, which describes the use of a pair of masks over two
annular regions, for double checking the value of the rotation angle
beta.
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