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Hopkins procedure for tunable magnification:
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We analyze the use of two varifocal lenses, with fixed interlens separation, for achieving tunable magnification at a
specific throw. Our discussion extends the Hopkins procedure circumscribed to the determination of fixed optical
powers in a multilens system. We illustrate our results by presenting the Gaussian optics design of surgical specta-
cles, which have tunable magnification while generating virtual images with zero throw. We also report novel for-
mulas describing this type of two-lens zoom system, which works without any mechanical compensation. © 2020

Optical Society of America
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1. INTRODUCTION

Presently, there are several competing technologies for imple-
menting varifocal lenses [1–5]. Independently of the winning
technology, there is a parallel trend for designing novel optical
systems employing varifocal lenses [6–9].

Kitajima is credited for designing the first varifocal lens
[10,11]. Lohmann [12–15] and Alvarez [16], independently
and simultaneously, proposed a novel method for setting varifo-
cal lenses by using a pair of cubic phase masks, which are lateral
displaced.

Related to the Lohmann–Alvarez proposal, it is now known
that, by in-plane rotating a pair of diffractive lenses [17,18]
or by rotating a pair of refractive masks [19–21], one can also
implement varifocal lenses.

On the other hand, in a seminal paper, Hopkins discussed
the generic formula for designing optical systems with multiele-
ments [22]. Application of the Hopkins procedure has a quite
significant record [23–32].

To our knowledge, the Hopkins procedure considers only
the use of elements with fixed optical power. In what follows,
we extend the Hopkins procedure for employing two varifocal
lenses that work at fixed interlens separation while generating
tunable magnification with fixed throw.

For illustrating our proposal, we present the Gaussian optics
of tunable magnification spectacles [33], which employs two
varifocal lenses with fixed interlens separation. For emphasizing
the tuneability of our proposal, we explore numerically the
impact on optical powers, when changing the lateral magnifica-
tion in the range 1.2≤M ≤ 5. Inside this range, we find that
the optical powers have achievable values.

For the sake of clarity in our discussion, in Section 2 we dis-
cuss the use of two varifocal lenses for tuning the magnification
of virtual images, at zero throw. In Section 3, we report new for-
mulas describing the variable optical powers, of the composing
elements, as well as the equivalent optical power. In Section 4,
we present the formula specifying the positions of the principal
planes and those of the focal planes. In Section 5, we summarize
our contribution.

2. TUNABLE MAGNIFICATION WITH ZERO
THROW

In Fig. 1(a) we show a 3D diagram of a two-lens system, which
reduces angular magnification, with zero throw. Equivalently,
the axial object point and the axial image plane are Bravais
points [34]. In Fig. 1(b), we depict the main paraxial variables
for describing the optical system.

As indicated in Fig. 1, we denote as z0 < 0 the reduced dis-
tance between the object plane and the first lens. Because the
reduced interlens separation is d > 0, the reduced distance
from the second lens to the image plane is equal to z0 − d < 0.
Consequently, if we denote as y1 > 0 the height of the paraxial
ray (in red) at the first element, then the incident paraxial angle is

n0 u0 =−
y1

z0
> 0. (1)

In Eq. (1) we denote as n0 the refractive index of the space
located between the input plane and the first lens. At the second
element, the height of the paraxial ray is denoted as y2. We note
that, after the second element, the paraxial angle is
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Fig. 1. Schematics of the Gaussian design. (a) Angular reduction of
the paraxial marginal ray (in red). (b) Relevant variables. The refractive
indices are specified inside boxes.

n2 u2 = −
y2

(z0 − d)
> 0. (2)

In Eq. (2) we denote as n2 the refractive index after the inter-
lens separation. Now it is convenient to denote the ratio between
the two paraxial heights as

M∗ =
y2

y1
. (3)

Next, we recognize that the lateral magnification is

M =
n0 u0

n2 u2
> 1. (4)

Then, by substituting Eqs. (1)–(3) in Eq. (4), we have that

M M∗ = 1−
d
z0

. (5)

For our current discussion, we have employed z0 =−25
(cm), which is apparently a good working distance for a surgeon.
This value is also useful for making comparisons between our
numerical simulations and the results reported by Mouroulis
and Macdonald, who set z0 =−25 (cm) and d = 3 (cm).
(See [33].)

In Fig. 2 we plot the relationship in Eq. (5) for three different
values of the reduced interlens separation d and for z0 =−25
(cm). It is apparent from Fig. 2 that the height ratios do not
change substantially if the values of interlens separation are

Fig. 2. Hyperbolas depicting the relationship between the mag-
nification and the height ratio, as in Eq. (5), for z0 =−25 (cm) and
for three values of interlens separation: d = 1 (cm), 2 (cm), and
d = 3 (cm).

in the range (1 cm, 3 cm). For our current discussion, we set
d = 3 (cm). Our choice is useful for making comparisons with
the results in [33].

3. OPTICAL POWERS WITH TUNABLE
MAGNIFICATION

Next, we follow the procedure outlined by Hopkins, in [22], for
obtaining the optical power of the first element

K1 = −
1

z0
+

1−M∗

d
. (6)

By employing the expression of M∗, in Eq. (5), we can rewrite
the required optical power in Eq. (6), as a function of the lateral
magnification

K1 =

(
1

d

) (
1−

1

M

)(
1−

d
z0

)
. (7)

To our current knowledge, Eq. (9) is a novel formula. Next,
we proceed in a similar fashion, for obtaining the optical power
of the second element. According to the Hopkins procedure, we
have that

K2 =−

(
1

d

)(
1

M∗
−

1

1− d
z0

)
. (8)

Next, by substituting the value of M∗ (as a function of M) in
Eq. (8), we obtain

K2 =−

(
1

d

)
(M − 1)(
1− d

z0

) . (9)

Again, to our current knowledge, Eq. (9) is a novel formula.
The result in Eq. (9) specifies the optical power of the second
element, as a function of the lateral magnification.
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Next, we use Eqs. (7) and (9) for obtaining the equivalent
optical power, which reads

K =
(
−

1

z0

)(
1−

1

M

) (
M + 1− d

z0

)
(

1− d
z0

) . (10)

In Fig. 3(a), we plot the variations of K1, K2, and K as
functions of the lateral magnification M. The curves con-
sider that the interlens separation can have three different
values: d = 1 (cm), 2 (cm), and d = 3 (cm), while as before
z0 = −25 (cm). It is apparent from Fig. 3(a) that the equiv-
alent optical power varies slowly with changes of the interlens
separation.

Fig. 3. Variations of the optical powers, K 1, K 2, and K , as a func-
tion of the lateral magnification. (a) Plot of optical power variations for
three different values of the interlens separation d= 1 (cm), 2 (cm),
and d= 3 (cm). (b) Plot of variations of the equivalent optical power at
a different scale.

For a close look at this situation, in Fig. 3(b), we plot at a dif-
ferent scale Eq. (10). This later graph verifies that the equivalent
optical power varies slowly as one modifies the interlens separa-
tion.

Here, it is relevant to indicate that, in Fig. 3, we employ units
of 1/cm, for plotting, along the vertical axis, the values of optical
power.

4. PRINCIPAL PLANES AND FOCAL PLANES

We remember that, for optical systems that have elements with
fixed optical powers, the positions of the principal planes remain
at constant locations. However, if the elements have variable
optical powers, then positions of the principal planes vary as the
magnification changes.

In what follows, we report new formulas, as well as the graphs,
that describe the variations of the back focal distance, fBack; the
front focal distance, fFront; the distance from the first element to
the front-principal plane, δH; and the distance from the second
element to the back-principal plane, δH ′.

As depicted in Fig. 4(a), to our end, we trace a paraxial ray that
impinges the first element, with an angle equal to zero. After the
first refraction, the paraxial ray hits the second element, with a
height y2 =M−∞ y1; where now the height ratio M−∞ is

Fig. 4. Back cardinal planes. (a) Schematic depicting the back-
principal plane H ′ and the back focal plane F ′. (b) As a function of the
lateral magnification, we plot the variations of the focal length, f ′, the
back focal distance fBack, and the position of the back-principal plane,
δH ′.
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M−∞ =
d
z0
+

1

M

(
1−

d
z0

)
. (11)

To our knowledge, Eq. (11) is a novel formula.
After the second refraction, the paraxial ray intercepts the

optical axis at the back focal point. Hence, the back focal
length is

fBack =−

(
1− d

z0

M − 1

)(
1+ (M − 1) d

z0

M + 1− d
z0

)
z0. (12)

To our knowledge, Eq. (12) is a novel formula.
Because the focal length can be expressed as f ′ =

fBack − δH ′, the distance from the second element to the
back-principal plane is

δH ′ =−
K1

K
d =

(
1− d

z0

) 2

M + 1− d
z0

z0. (13)

In Fig. 4(b), we note that, as M increases, the values of f ′,
fBack, and δH ′ tend to zero.

Next, as depicted in Fig. 5(a), we consider a paraxial ray that
leaves the optical system with a paraxial angle equal to zero.

This condition can be rephased as follows. We trace backward
the exit ray, in blue. Then, the ray in blue impinges on the second
element with an angle equal to zero.

Fig. 5. Front cardinal planes. (a) Schematic depicting the focal
plane F and the front-principal plane H. (b) Variations of the front
focal distance fFront as well as changes of the distance between the first
optical element to the front-principal plane δH.

After a refraction at the second element, the ray hits the first
element with a height y2 = M∞ y1, where the height ratio
M∞ is

M∞ =
M − d

z0

1− d
z0

. (14)

To our knowledge, Eq. (14) is a novel formula.
Next, after the refracting at the first element, the ray inter-

cepts the optical axis at the front focal point. Hence, the front
focal length is

fFront =

(
M z0

M + 1− d
z0

)(
M − d

z0

1− d
z0

)
. (15)

Because the front focal length is f = fFront − δH, the
distance from the first element to the front-principal plane is

δH =
K2

K
d =

(
1− d

z0

)
M + 1− d

z0

z0. (16)

To our knowledge, Eq. (16) is a novel formula.
The separation between the principal planes is

1H = d + δH ′ − δH. (17)

By substituting the results in Eqs. (13) and (16), we can
rewrite Eq. (17) as

1H =−
(M − 1)(1− d

z0
)[

M + 1− d
z0

] z0. (18)

To our knowledge, Eq. (18) is a novel formula.
In Fig. 6, we display the values of δH, δH ′, and1H as func-

tions of the lateral magnification M.

Fig. 6. Principal plane locations and the separation between the
principal planes.
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As pointed out in the introduction, our numerical evaluations
show that, when changing the lateral magnification, in the range
1.2≤M ≤ 5, the optical powers have achievable values.

5. FINAL REMARKS

We have presented an analysis on the use of two varifocal lenses
for achieving tunable magnification between conjugate planes.

We have considered that the optical system has a fixed inter-
lens separation and a prespecified throw. As the magnification
changes, there is no need of any mechanical compensation.

Our current analysis extends the seminal Hopkins procedure,
which is circumscribed to the specification of fixed optical pow-
ers, in a multilens system.

For illustrating our proposal, we have presented a first-order
design of surgical spectacles, which have tunable magnification
while generating virtual images with zero throw. If you will, with
variable magnification, an axial object plane and its conjugate
image remain at the same location as Bravais points.

By explicitly incorporating as a variable the tunable magnifi-
cation, we have reported novel formulas [Eqs. (7), (8), and (10)],
which explicitly express the variation of the optical powers as a
function of the tunable magnification.

We have also unveiled formulas that describe, as a function
of the changing magnification, the locations of the principal
planes, δH and δH ′, as well as the values of the front focal length
and of the back focal length. To the best of our knowledge, these
relationships are new.
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