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Abstract We discuss the use of a pair of phase masks, which have 
both radial and helical variations, for optically implementing a linear 
combinations of two different types of wavefront aberrations. We show 
that by using the two pair of phase masks, one can combine symmetric 
and asymmetric aberrations. Some simple numerical simulations 
illustrate our proposed procedure. 
 
 
 For several optical applications it is convenient to have 
optical devices that can generate wave aberrations, with 
controllable aberration coefficients [1-2]. For this 
purpose, some authors have applied two phase conjugated 
masks; as proposed by Kitajima [3], Lohmann [4-7], 
Alvarez [8, 9] and Palusinski et al. [10].  
 Other methods incorporate two phase masks, which 
have phase variations that expressible in terms of 
trigonometric functions of the polar angle [11, 12].  
 Rather recently, some of us have suggested the use of 
vortex phase pairs, which have linear phase variations in 
the polar angle [13, 14]. In Table 1, we summarize these 
efforts.  

Table 1. Alternatives of phase angular variations. 

  

Here our aim to explore the use of two pairs of phase 
conjugated masks, working in tandem, for generating  
linear combinations of wave aberrations.  
In the next section, we discuss a method for generating 
linear combinations of symmetric wave aberrations. Then, 
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we explore a method for incorporating asymmetric wave 
aberrations, into the linear combination.  
 For our present discussion we employ the following 
notation. As depicted in Fig. 1, we consider that we have 
two pairs of free form, refractive elements. The first pair 
is imaged, with magnification M = 1, on the second pair. 
The Greek letters  and  represent, respectively, the 
radial spatial frequency and the polar angle, at any of two 
conjugate planes. The cut-off spatial frequency is  = . 

 

 
Fig. 1. Two vortex pairs in tandem. 

Therefore, in the following equations, we assume that any 
complex amplitude transmittance is located inside a 
circular aperture, which is represented by the binary 
function circ( / ). This function is equal to unity inside a 
circle of radius  = . Otherwise, the circ( / ) is equal to 
zero. At the position of the first pair, the first element of 
this pair has the following complex amplitude 
transmittance 
 

 ,0
1

0

( , ) exp 2
2

mM
m

m

U
P i  (1) 

 
In Eq. (1)
the optical radiation. We have an aberration polynomial in 
the radial coordinate, aberration coefficients Um,o, which 
reach their maximum value at  The 
complex amplitude transmittance of the second free form 
element is 
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2 1( , ) ( , ).P P  (2) 

 
The complex amplitude transmittance of the second 
element is the complex conjugate of the first element. 
Next, we place together the two elements for setting the 
first pair. Then, we introduce an in-plane rotation (say by 

) between the elements of the pair. Hence, for 
the first pair, the complex amplitude transmittance is  
 

 1 2
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 (3) 

 
It is apparent from Eq. (3) that the first pair generates a 
rotationally symmetric wavefront, with continuously 
variable optical path difference .  Now, we consider that 
the same above analysis applies for the second pair; but 
now the wavefront aberration has a different polynomial 
expansion, and the value of the in-plane rotation angle is 
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Thus, the overall complex amplitude transmittance of both 
pairs, working in tandem, is  
 

,0 ,0
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m m

m
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i

 (5) 

 
It is clear from Eq. (5) that we have obtained a linear 
combination of two wavefront aberrations, with weighting 
factors  2 we illustrate our general result, 
by considering the generation of Zernike spherical 
aberration, say in the first pair. On the left-hand side of 
Fig. 2, we show the 3-D plots. On the right hand side, we 
display the contours of the phase delays.  The images 
along Fig. 2 a) describe the first term of Eq. (3),  = 1, 
while the images along Fig. 2 b) describe the second term 
of Eq. (3)  = 1. Along Fig. 2 c), we display the 
generated wavefront. 
 
 

 
 

Fig. 2. The generation of .  

Other possibility is obtained if in Eqs. (3)-(4) we set 

6 4
6,0 4,0U( ) ; ( ) .

W W
and V  (6) 

Hence, the overall complex amplitude transmittance, in 
Eq. (5), becomes 

6 4
6,0 4,0T( ; ; ) exp .

W W
i  (7) 

Of course, there is a myriad of possible combinations, 
which are beyond our present scope. In what follows we 
incorporate the presence of asymmetric wavefronts, in the 
proposed linear combination.  

Now, for the sake of simplicity in our discussion, we 
consider that the complex amplitude transmittance of the 
first free form element, in the second pair, is  
 

 
2 1

,
1( , ) exp 2 cos .

m
m nW

Q i n  (8) 

 
As before, for the second element of the first pair, the 
complex amplitude transmittance is the complex 
conjugate of equation 8. If we place together the two 
elements of the second pair, and we introduce an in-plane 
rotation between these elements, the complex amplitude 
transmittance is 
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2 1,2 sin( )
2Q( , ; ) exp 2 sin .

mm n
nW

i n (9) 

 
It is apparent from Eq. (9) that by properly selecting the 

, one is able to change continuously the 
aberration coefficient W m, n, by the factor 2 sin(n /2). In 
Fig. 3, we illustrate the generation of Seidel primary 
coma, m=1, n=1. 
 
 

 
 

Fig. 3. Same as Fig. 2 but for Seidel primary coma.  
 

 Finally, by taking into account the results in Eqs. (3) 
and (9), one can obtain that for the two pairs working in 
tandem, the overall complex amplitude transmittance is a 
linear combination of symmetric aberrations with 
a
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We recognize that other possibility is to generate different 
asymmetric aberrations, in each pair, and the obtaining a 
linear combination of two different asymmetric 
aberrations. 

 
 

 In conclusions, we have discussed an optical method 
for generating a linear combination of either symmetric or 
asymmetric wave aberrations. The proposed method uses 
two pairs of phase masks, which work in tandem. At each 
pair, the complex amplitude transmittance of the first 
element of the pair is the complex conjugate of the second 
element. After introducing an in-plane rotation between 
the elements of any pair, one can change continuously the 
weighting factor of a given wavefront. Since the two pairs 
work in tandem, then by superimposing the wavefronts of 
each pair, one can generate a linear combination of them. 
The weighting factors of the linear combination are 
related to the in-plane rotation angles, which are 
represented by the parameters  and . Hence, the 
weighting factors can be changed continuously. We have 
included some simple numerical simulations, for 
illustrating the proposed method.  
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