






Tuning field depth at high
resolution by pupil engineering
JORGE OJEDA-CASTAÑEDA

1,*
AND CRISTINA M. GÓMEZ-SARABIA

2

1Electronics Department, Engineering School, University of Guanajuato, Comunidad Palo Blanco, 36885
Salamanca, Gto., Mexico
2Digital Arts Department, Engineering School, University of Guanajuato, Comunidad Palo Blanco, 36885
Salamanca, Gto., Mexico
*Corresponding author: jojedacas@ugto.mx

Received April 6, 2015; revised October 2, 2015; accepted October 5, 2015; published December 10, 2015
(Doc. ID 237666)

We present a simple comprehensive treatment on the use of free-form optical elements,
and of nonuniform optical windows, either for increasing focal depth [by regulating the
width of the axial point spread function (PSF)] or for tuning the depth of field [by con-
trolling the influence of focus error on the modulation transfer function (MTF)]. We
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errors on the MTF. Our discussion also includes the use of vortex lenses for designing
nonconventional optical systems. © 2015 Optical Society of America
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Tuning field depth at high
resolution by pupil engineering
JORGE OJEDA-CASTAÑEDA AND CRISTINA M. GÓMEZ-SARABIA

1. INTRODUCTION

Over the past three decades, many remarkable advances have been made for im-
proving the quality of modern imaging devices. Indeed, there is a vigorous re-
search trend of novel imaging systems that incorporate nonconventional free-form
optical elements, nonuniform optical windows, and novel computing imaging
techniques.

To describe some of the above achievements, we have made the following choices. We
have decided to present a consistent technical analysis, based on scalar diffraction
theory, rather than presenting a state-of-the-art technique for either digital recording
or digital processing. Furthermore, aiming for a simple narrative, we use several sche-
matic representations of optical systems and of phase-space descriptions. However,
we have refrained of presenting sets of fancy digitally processed images.

We have selected, in chronological order, 99 papers that from our viewpoint have
helped to conceptualize new schemes for acquiring images or for overcoming the
classical limits on image quality [1–99]. Many of these papers are scattered in the
technical literature, and several of them have not been incorporated into later publi-
cations that form part of our present review. We believe that this initial set of refer-
ences will help readers to expand, or indeed to explore, other aspects of our current
discussion. Needless to say, our current discussion relies heavily on our previous
publications. For the sake of completeness of our presentation, many of these results
are included here. However, we have reduced to a minimum reference duplications
while still preserving citations in numerical order.

To build the proper scenario for our discussion, we cite classical publications describ-
ing tolerance criteria of image quality [100–103]. Then, we refer to contributions that
challenge the status quo for designing imaging devices and for setting image quality
criteria [48,93,104–122].
Before embarking on our technical discussion, we note that the various selected topics
have not been identified with a single name. Indeed, to our knowledge, no attempts
have been made toward relating and summarizing the various developments, when
using free-form elements, as well as the use of nonuniform windows for gathering
images, which will be later digitally processed for reducing the influence of focus
error. For describing the use of nonuniform windows, the most commonly used no-
tation is optical apodization. However, apodization was coined by Pierre Jaquinot for
denoting the reduction of the sidelobes of the impulse response in optical spectros-
copy [123–125]. As a secondary effect, the apodization masks broaden the central
lobe of the point spread function (PSF). Some experts may not be aware of the
following analogy. If one considers the axial PSF of an optical system, then reducing
the sidelobes and widening the central lobe is useful for broadening the axial impulse
response and, therefore, for extending focal depth [126–130].
Furthermore, it is still not so well known that there is a strong analogy between the use
of masks that reduce the impact of focus error on the MTF [131–137] and the use of
the ambiguity function and the Wigner distribution in image quality [138–144]. We
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believe that these analogies may be useful for exchanging profitable information
between different applications [145–157].
In what follows we present a simple, comprehensive treatment of the basic principles
and some applications that describe the use free-form elements and nonuniform
optical windows for reducing the influence of focus error, at full pupil aperture or,
if you will, with high resolution. We employ the rising notation of pupil engineering,
which is intended to incorporate previous notation, such as tailoring the PSF or
shaping the MTF. As part of our discussion, we describe the use of a vortex pair,
as varifocal lenses, for proposing novel, nonconventional optical systems.

To our end, in Section 2, we revisit the McCutchen theorem [158–176] for reducing
sidelobes and for broadening the axial irradiance response. In Section 3, we link the
evaluation of the out-of-focus optical transfer function (OTF) with the ambiguity func-
tion of the pupil aperture. We express the influence of focus error on the OTF as a
Taylor series expansion. We employ symmetry arguments on the generalized pupil
function for indicating that one can reduce by one-half the number of terms in the
Taylor series expansion. In Section 4, we show that the symmetry considerations lead
to the use of pairs of free-form refractive elements for implementing varifocal lenses.
In this direction, the initial proposal can be traced back to the use of cylindrical
lenses as suggested by Kitajima [177,178]. Improved versions for generating varifocal
lenses were proposed simultaneously and independently by Lohmann [179–182]
and by Alvarez [183–186]. We note that other authors have also described other
applications when using this type of lens [187–192]. In Section 5, we discuss the
use of a pair of vortex lenses for designing nonconventional optical systems. And
in Section 6, we summarize our contribution.

2. ENGINEERING THE AXIAL PSF

In Fig. 1 we display the optical setup used for extending the axial irradiance distri-
bution in an afocal optical system. If one uses scalar diffraction within the paraxial
regime, one can evaluate the complex amplitude distribution of the 3D impulse
response as follows:

Figure 1

Schematics of a telecentric optical system, which is used typically as an optical proc-
essor. At the Fraunhofer plane, one can place radially symmetric masks for spreading
the irradiance distribution along the optical axis.
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u!r; θ; z" #
Z

Ω

ρ#0

Z
2π

φ#0
U!ρ;φ" exp$−iπλzρ2 % i2πrρ cos!θ − φ"&ρdρdφ: (1)

In Eq. (1) we denote as !r; θ; z" the cylindrical coordinates in the image space, in the
pupil aperture we use polar coordinates !ρ;φ", and the Cartesian coordinates in the
pupil aperture are !μ; ν". Hence, ρ #

p
!μ2 % ν2" is the radial spatial frequency. Its

maximum value is the cut-off spatial frequency Ω. Finally, we denote as U!ρ;φ" the
complex amplitude transmittance over the pupil aperture.

By setting r # 0 in Eq. (1), one can obtain the complex amplitude distribution along
the optical axis or, if you will, the axial PSF:

u!0; θ; z" # 2π
Z

Ω

ρ#0

!
1

2π

Z
2π

φ#0
U!ρ;φ"dφ

"
exp$−iπλzρ2&ρdρ: (2)

If one expresses the integral between curly brackets as an angular average, or
zero-order circular harmonic hU!ρ"i, then Eq. (2) becomes

u!0; θ; z" # 2π
Z

Ω

ρ#0
hU!ρ"i exp$−iπλzρ2&ρdρ: (3)

Now, it is convenient to rewrite Eq. (3) by using the following change of variables:

W #
W 2;0

λ
# − λΩ2

2
z; q!W " # u!0; θ; z": (4a)

ζ #
#
ρ
Ω

$
2

− 1

2
; S!ζ" # hU!ρ"i #

1

2π

Z
2π

φ#0
U!ρ;φ"dφ: (4b)

In Eq. (4) we use as shorthand notation the letter W # W 2;0∕λ, where W 2;0 is the
wavefront coefficient for focus error, and λ is the wavelength of the optical radiation.
The change of variable in Eq. (4a) expresses a longitudinal displacement (along the
optical axis) in terms of the wavefront aberration coefficient W 2;0. The angular
average in Eq. (4b) is also known as the zero-order circular harmonic.

We also note that the change of variable in Eq. (4b) usefully describes a geometrical
transformation for mapping the radial domain, 0 ≤ ρ ≤ Ω, into the dimensionless do-
main−1∕2 ≤ ζ ≤ 1∕2. In Fig. 2 we illustrate the steps associated with the geometrical
transformation in Eq. (4), which maps the circular function into the rectangular func-
tion. In addition, we note that the above mapping transforms a spherical wavefront
into a plane wave; or, if you will, it transforms a lens into a prism. Other interesting
cases are summarized in Table 1.

By substituting Eq. (4) into Eq. (3), one obtains the following remarkably simple, yet
useful, result, which can be traced back to McCutchen, as was pointed out in the
introduction. The axial complex amplitude distribution is proportional to the 1D
Fourier transform of the pupil aperture S!ζ". That is,

s!W " # πΩ2

Z
0.5

ζ#−0.5
S!ζ" exp$i2πWζ&dζ: (5)

Hence, the Strehl ratio for focus errors is
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IS!W " #
js!W "j2

js!0"j2
#

!!!
R
0.5
−0.5 S!ζ" exp!i2πWζ"dζ

!!!
2

!!!
R
0.5
−0.5 S!ζ"dζ

!!!
2

: (6)

Some experts may not be aware of the following analogy. If one selects a mask S!ζ"—
from the set of classical apodizers that are used in spectroscopy—then the irradiance
impulse response I s!W " has a wide central lobe, and it has reduced secondary lobes.
Therefore, we have suggested use of a classical apodizer in the ζ-domain for gener-
ating in the ρ-domain radial masks, R!ρ", which are able to expand the depth of focus
by broadening the axial impulse response [126]. Later on, other authors used different
conceptual frames for arriving at similar conclusions [193–196]. In Fig. 3 we illustrate
the above remarkable result by describing the following ideally narrow, annular
aperture:

U!ρ;φ" # δ

"
ρ − Ωffiffiffi

2
p

$
; S!ζ" # δ!ζ": (7)

Table 1. Examples That Illustrate the Use of the Mapping in Eq. (4) to Relate Complex
Amplitude Distributions in the ρ-Domain with Complex Amplitude Distributions in the
ζ-Domain

ρ-Domain ζ-Domain
R!ρ" S!ζ"
circular aperture rectangular aperture
narrow annular aperture narrow slit
lens prism
axial impulse response Fourier transform of S!ζ"
impact of spherical aberration Fresnel transform of S!ζ"

Figure 2

Pictographic description of an angular average operation on a pupil mask. After this
operation, the resultant complex amplitude transmittance is the function hU!ρ"i,
which is known as the zero-order circular harmonic. It varies only with the radial
variable, denoted as the ρ-domain. Next, we illustrate the geometrical transformation
for mapping hU!ρ"i into S!ζ". The support of S!ζ" defines the ζ-domain, where ζ is a
dimensionless variable.

Review Vol. 7, No. 4 / December 2015 / Advances in Optics and Photonics 819



This ideal pupil aperture produces an axial impulse response that is equal to a
constant. Hence, we obtained an infinitely extended focal depth. For proposing a
physically viable description, in what follows we represent the Dirac delta in
Eq. (7) as the superposition of a set of orthonormal functions.

This approach can be traced back to Frieden, who used a similar approach for
describing superresolution [197]. Later on, one of us used the same mathematical
model for proposing methods that extend the spread of the axial irradiance
distribution [198,199].

To our end, we synthesize Dirac’s delta in the ζ-domain by using a finite number, say
N , of functions that belong to a complete, orthonormal set of functions. See, for
example, Appendix A. In mathematical terms,

δ!ζ" ≈
XN

n#0

Φ$
n!0"Φn!ζ": (8)

Of course, in the ρ-domain, the complex amplitude transmittance of the pupil mask is
described by the radial function

δ

!
ρ − Ωffiffiffi

2
p

#
≈
XN

n#0

Φ$
n!0"Φn

$!
ρ
Ω

#
2

−
!
1

2

#%
: (9)

By substituting Eq. (8) into Eq. (9), we obtain

IS!W " #
&&&&
XN

n#0

Φ$
n!0"

Z
0.5

−0.5
Φn!ζ" exp!i2πWζ"dζ

&&&&
2

: (10)

In what follows, we recognize that, for a given set of orthonormal functions (in the
space domain), there is another set of orthonormal functions (in the frequency do-
main). Both set of orthonormal functions are related by a Fourier transform. In other
words, these two sets of functions are Fourier transform pairs:

Figure 3

Visualization of the geometrical transformation in Eq. (4), for mapping a narrow
annular aperture, in the ρ-domain, into a narrow slit in the ζ-domain.
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φn!W " #
Z

0.5

−0.5
Φn!ζ" exp!i2πWζ"dζ: (11)

Then, by using this result, the Strehl ratio versus focus error is

IS!W " #

!!!
PN

n#0Φ$
n!0"φn!W "

!!!
2

!!!
P

N
n#0Φ$

n!0"φn!0"
!!!
2
: (12)

It is apparent from Eq. (12) that the normalized irradiance distribution along the op-
tical axis can, in principle, be extended at will by increasing the number of terms N . In
Fig. 4 we display this latter behavior, if Φn!μ" are the Chebyshev polynomials of the
first kind and order m, and, consequently, φn!W " are the Bessel functions of the first
kind and integer order m.

Here it is important to note that the geometrical transformation in Eq. (4b), and in
Fig. 2, can be comprehensive for a large set of masks if the masks are properly scaled
to fit either a reduced circular aperture or an annular (ring) aperture, as is depicted in
Fig. 5. For these applications it is convenient to define a fill factor, which is here
denoted as ε. This parameter is a real positive number such that 0 < ε ≤ 1. Next,
for describing a mask that is scaled to cover a reduced version of the pupil aperture,
0 ≤ ρ ≤ εΩ. As a first step, we set the cut-off radial frequency to the value εΩ, and
then we note that the mapping from the ζ-domain into the ρ-domain is

ρ #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
ζ %

1

2

$s

εΩ; − 1

2
≤ ζ ≤

1

2
; R!ρ" # S!ζ"; (13a)

or, equivalently,

ζ #
#

ρ
εΩ

$
2

− 1

2
; 0 ≤ ρ ≤ εΩ; S!ζ" # R!ρ": (13b)

Figure 4

At the left-hand side we plot the changes of the complex amplitude transmittance, in
the ζ-domain, as one increases the number of Chebyshev polynomials in Eq. (12). At
the right-hand side we plot the generated axial irradiance distributions, as one
increases the number of Chebyshev polynomials.

Review Vol. 7, No. 4 / December 2015 / Advances in Optics and Photonics 821



Then, the Strehl ratio versus focus error becomes

I closing!W ; ε" #

!!!
R
0.5
−0.5 S!ζ" exp!i2πε

2Wζ"dζ
!!!
2

!!!
R
0.5
−0.5 S!ζ"dζ

!!!
2

: (14)

Therefore, we claim that by reducing the pupil aperture, one preserves the functional
relationship of the Strehl ratio. However, there is a scale variation. That is,

I closing!W ; ε" # IS!ε2W ": (15)

In Eq. (15) the Strehl ratio for the full pupil aperture is I s!W ". It is apparent from
Eq. (15) that the tolerance to focus error is increased by the factor ε2.

However, we note that by closing the pupil aperture, the light gathering power
decreases by the same factor. These results are summarized in Table 2.

Next, for describing scaled versions of annularly distributed complex amplitude dis-
tributions, we recognize that the support of the pupil aperture is now εΩ ≤ ρ ≤ Ω.
Then, for mapping the ρ-domain into the ζ-domain, we employ the geometrical
transformation

ρ # Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
ζ $

1

2

$
!1 − ε2" $ ε2

s

; − 1

2
≤ ζ ≤

1

2
; R!ρ" # S!ζ": (16a)

or equivalently,

Figure 5

In Row 1, along three different columns, we depict three types of radially symmetric
pupil mask. Along Row 2, in (a) we show the full circular aperture as a blue-shaded
area. In (b) we portray a reduced circular aperture, and in (c) we depict a scaled an-
nular aperture. These masks are treated as suitable scaled versions of the full pupil
aperture.
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ζ !
1

1 − ε2

!"
ρ
Ω

#
2

− 1

2
"1# ε2$

$
; εΩ ≤ ρ ≤ Ω; S"ζ$ ! R"ρ$: (16b)

The mapping in Eq. (16) scales usefully any given mask (taken from the ζ-domain)
into a 2D mask that fits the annular aperture. For these scaled versions, on annular
apertures, the Strehl ratio versus focus error is

Iannular"W ; ε$ !

%%%
R
0.5
−0.5 S"ζ$ exp"i2π"1 − ε2$Wζ$dζ

%%%
2

%%%
R
0.5
−0.5 S"ζ$dζ

%%%
2

: (17)

Thus, the versions fitting the annular apertures have a Strehl ratio versus focus error
that is equal to

Iannular"W ; ε$ ! IS %"1 − ε2$W &: (18)

Again, in Eq. (18), the Strehl ratio for the full pupil aperture is I s"W $.

It is clear from Eq. (18) that the Strehl ratio again preserves its functional relationship.
However, there is a different scaling factor. One example suffices for illustrating rather
well the above generic results. We analyze the use of the apodizer

S"ζ$ ! "1 − 4ζ2$rect"ζ$: (19)

In what follows, we scaled this apodizer to fit either circular apertures or annular aper-
tures. In Fig. 6(a) we plot, in the ζ-domain, the amplitude transmittance in Eq. (19).
From Eqs. (4) and (19), we note that the circularly symmetric masks covering the full
circular aperture have the following complex amplitude transmittance:

R"ρ$ ! 4

"
ρ
Ω

#
2
!
1 −

"
ρ
Ω

#
2
$
circ

"
ρ
Ω

#
: (20)

The amplitude transmittance in Eq. (20) is plotted in Fig. 6(b). Next, we employ
Eqs. (13) and (19) to obtain the complex amplitude transmittances of the masks that
fit the reduced versions of the circular aperture:

R"ρ$ ! 4

"
ρ
εΩ

#
2
!
1 −

"
ρ
εΩ

#
2
$
circ

"
ρ
εΩ

#
: (21)

In Fig. 6(c) we plot the amplitude transmittance in Eq. (21) for ε ! 0.9, 0.8, 0.7, 0.6,
and 0.5. Finally, if we apply Eqs. (16) and (19), we identify the complex amplitude
transmittances of the annularly distributed masks that fit ring apertures:

R"ρ$ !
"

2

1 − ε2

#
2
!"

ρ
Ω

#
2

− ε2
$!

1 −
"
ρ
Ω

#
2
$!

circ

"
ρ
Ω

#
− circ

"
ρ
εΩ

#$
: (22)

In Fig. 6(d) we plot the amplitude transmittance in Eq. (22) if the obscuration ratio is
ε ! 0.1, 0.2, 0.3, 0.4, and 0.5.

Table 2. Comparisons of the Variations of the Light Gathering Power and of the Strehl
Ratio, in Terms of the Fill Factor εa

0 < ε ≤ 1 Light-Gathering Power T"ε$ Strehl Ratio Versus Focus Errors

Clear pupil 0 ≤ ρ ≤ Ω T ! 1 I"W $ ! sinc2"W $
Closing down 0 ≤ ρ ≤ εΩ T closing"ε$ ! ε2 I closing"W ; ε$ ! sinc2"ε2W $
Annular aperture εΩ ≤ ρ ≤ Ω T annular"ε$ ! 1 − ε2 I annular"W ; ε$ ! sinc2""1 − ε2$W $
aThis parameter scales suitably the cut-off spatial frequency Ω.
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The axial irradiance distribution for the masks in Fig. 6 is related to the Fourier trans-
form of Eq. (19); that is,

IS!W " #
Z

∞

−∞
!1 − 4ζ2"rect!ζ" exp!i2πWζ"dζ #

!
2

π2W 2

"
2

$sinc!W " − cos!πW "%2:

(23)

Consequently, by fitting the apodizer in the reduced pupil aperture, the Strehl ratio
becomes

I closing!W " #
!

2

π2ε2W 2

"
2

$sinc!ε2W " − cos!πε2W "%2: (24)

Furthermore, by fitting the apodizer in annular apertures, the Strehl ratio is

I annular!W " #
!

2

π2!1 − ε2"W 2

"
2

$sinc!!1 − ε2"W " − cos!π!1 − ε2"W "%2: (25)

In Fig. 7 we plot the results in Eqs. (23), (24), and (25) for several values of ε. The
simple cases of transparent circles and transparent rings have been summarized
already in Table 2. Next, before ending this section, it is relevant to discuss some
particularly insightful examples.

2.1. Nonconventional Annularly Peaked Mask
For our first example, we propose the use of the following nonconventional narrow
annular mask. In the ρ-domain, that amplitude transmittance is

Figure 6

Variations of the amplitude transmittance, as one changes the fill factor ε. (a) The
initial amplitude transmittance in the ζ-domain. (b) The amplitude transmittance
inside a full pupil aperture. (c) The amplitude transmittances when fitting reduced
circular apertures. (d) The amplitude transmittances when fitting reduced annular
apertures.
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R!ρ" # exp

!
−10

""""2
#
ρ
Ω

$
2

− 1

""""
0.25

%
circ

#
ρ
Ω

$
: (26a)

At the top of Fig. 8, we plot the complex amplitude distribution in the ζ-domain:

S!ζ" # expf−10j2ζj0.25grect!ζ": (26b)

By evaluating numerically its Fourier transform, and later on by taking the square
modulus of this Fourier transformation, we obtain the axial irradiance distribution
that is depicted at the bottom of Fig. 8. It is apparent from Fig. 8 that, by using
the annularly distributed amplitude mask in Eq. (26a), the axial irradiance distribution
has a strong peak at the focal plane. Outside the central peak, the axial irradiance
distribution decreases slowly as a monotonic function.

2.2. Quadratic Phase Delay in the ζ-Domain
For our second example, we analyze the use of a radial mask that is able to generate an
irradiance distribution similar to the Fresnel diffraction pattern of a slit. In the
ζ-domain, the proposed mask introduces a phase delay to the second power.

In mathematical terms, at the pupil aperture we place a radially symmetric mask,
whose complex amplitude distribution is

Figure 7

Graphs depicting the variations of the Strehl ratio versus focus error for the masks in
Fig. 6, for certain values of the fill factor ε. In (a) we describe a comparison between
the full clear circular aperture and an apodized circular aperture. In (b) we plot the
variations for scaled circular apertures. In (c) we plot the variations for scaled annular
apertures.
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R!ρ" # exp

!
i2πB

"
2

#
ρ
Ω

$
2

− 1

%
2
&
circ

#
ρ
Ω

$
: (27a)

Then, in the ζ-domain the complex amplitude distribution is

S!ζ" # expfi2πB!2ζ"2g: (27b)

In Fig. 9, we plot the normalized axial irradiance distribution if the optical path differ-
ence is B # 10, in units of wavelengths. As one should expect, the Strehl ratio versus
focus error is similar to the near-field diffraction pattern generated by a rectangular
window. Consequently, the normalized axial irradiance distribution exhibits spurious
oscillations. In what follows we show that one can reduce these spurious oscillations
by placing a moderate absorbing Gaussian mask on the top of the phase mask
in Eq. (27a).

2.3. Moderate Axial Gaussian Apodizer
For our third example, we discuss the use of a moderate Gaussian attenuation, in the
ζ-domain, which is placed on the top of the phase mask in Eq. (27a).

At the bottom, we plot the Strehl ratio versus focus error that one obtains when using
this mask.

In the ρ-domain, the proposed radially symmetric mask has the following complex
amplitude transmittance:
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: (28a)

At the top of Fig. 10, we plot the complex amplitude transmittance in the ζ-domain:

Figure 8

Nonconventional amplitude transmittance, in the ζ-domain, of a mask that is used for
designing an annular apodizer (ρ-domain), which is able to generate a monotonically
decreasing peaked axial irradiance distribution.
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S!ζ" # expfi2πB!2ζ"2g expf−4cζ2grect!ζ": (28b)

As depicted at the bottom of Fig. 10, the Strehl ratio versus focus error has now a
Gaussian envelope, which exhibits local amplitude variations.

2.4. Cubic Phase Delay in the ζ-Domain: Axial Bursts
An interesting variant of the previous results is depicted in Fig. 11. Here the normal-
ized axial irradiance distribution has an asymmetrical profile, which is denoted as an
axial burst [200,201].

Figure 9

Strehl ratio versus focus error that is similar to the irradiance distribution of the Fresnel
diffraction pattern of a slit. This axial irradiance distribution is generated by using the
radially symmetric phase mask in Eq. (27a) with an optical path difference of 10
wavelengths.

Figure 10

At the top we display the amplitude transmittance of a moderate Gaussian apodizer in
the ζ-domain. In Eq. (28a) we describe the amplitude transmittance of the related
radial mask.

Review Vol. 7, No. 4 / December 2015 / Advances in Optics and Photonics 827



It is relevant to note that the axial asymmetrical behavior shown in Fig. 11 is caused by
the radially symmetric complex amplitude distribution:

R!ρ"#exp

!
i2πBsgn

"
2

#
ρ
Ω

$
2

−1"
%&&&&2

#
ρ
Ω

$
2

−1

&&&&
3
'
exp

!
−a

&&&&2
#
ρ
Ω

$
2

−1

&&&&
3
'
circ

#
ρ
Ω

$
:

(29a)

In the ζ-domain, the complex amplitude transmittance is

S!ζ" # expfi2πB sgn!ζ"j2ζj3g expf−aj2ζj3grect!ζ": (29b)

At the top of Fig. 11, we plot the axial irradiance distribution of a clear circular aper-
ture. At the bottom of Fig. 11, we plot the axial irradiance distribution associated to an
axial burst, which is obtained with the mask in Eq. (29b) for the values B # 4
and a # 0.5.

2.5. Dark Spot along the Optical Axis
Last, but not least, as our fifth example, we consider the use of pupil masks that have
spiral or helical variations [202]. This type of pupil mask is characterized for having a
zero-order circular harmonic that is equal to zero. Thus, these masks are able to sustain
a dark central spot along the optical axis. This kind of irradiance distribution may
be useful for optical alignment and for other nonconventional optical techniques
[203–218]. For these masks, the overall complex amplitude transmittance is different
from zero, but its angular average, as discussed in Eq. (4b), is equal to zero for any
value of ρ. That is,

Figure 11

Graphical comparison, at the same scale, of two axial irradiance distributions. At the
top, we display the irradiance distribution of a clear pupil aperture. At the bottom, we
show the axial irradiance bursts that are caused by the use of the radially symmetric
mask in Eq. (29).
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hU!ρ"i #
1

2π

Z
2π

φ#0
U!ρ;φ"dφ # 0: (30)

This interesting condition implies that the axial irradiance distribution is equal to zero.
Hence, the PSF is able to sustain a dark spot along the optical axis. Here we illustrate
with two simple examples the unique condition in Eq. (30). For generating helical
beams, it is common to use the following complex amplitude transmittance:

U!ρ;φ" # exp!iaφ": (31)

For our first example, in Fig. 12(a) we show the interference pattern between a uni-
form plane wave, as a reference beam, and the complex amplitude distribution in
Eq. (31). This type of interference pattern was analyzed first by Bryngdahl [219]
and later by Fürhapter et al. [220]. For the second example, the reference beam is
a binary zone plate that has binary helical variations or, if you will, phase-daisy
variations.

In Fig. 12(b) we show that the interferogram is a zone plate. The reference beam is a
plane wave, but the probe beam has the following complex amplitude variations:
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(32)

It is straightforward to verify that the complex amplitude transmittance in Eqs. (31)
and (32) fulfill the condition in Eq. (30). Hence, these masks are able to sustain a dark
spot along the optical axis. Now, we note that for generating Fresnel–Soret zone plates
with variable foci, Lohmann [221], Rogers and Rogers [222], and Burch and Williams
[223] suggested encoding the classical quadratic phase with helical variations.

By following Lohmann’s proposal, one can obtain interferograms such as the one
depicted in Fig. 13(b). Lohmann and Paris have suggested performing an angular
average (on this type of interferogram) for generating a varifocal zone plate with radial
symmetry [224]. Next, we follow a closely related approach for generating a series of
interferograms that have both helical variations and radial phase variations of the form
!ρ∕Ω"m. In Fig. 13 we show the interferograms that are obtained by the interference of

Figure 12

Irradiance distributions associated with two different interferograms. In each interfero-
gram, the reference beam is a plane wavefront. In (a) the probe beam is a helical beam
with continuous phase variations. In (b) the probe beam is a spherical wavefront,
which has helical binary phase transitions.
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a plane wave (as the reference beam) and an object beam that has the following
complex amplitude distribution:

Um!ρ;φ" # exp
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i2πa

"
ρ
Ω

#
m
φ

$
: (33)

All the members of this family set satisfy the condition hUm!ρ;φ"i # 0. Hence, these
complex amplitude distributions display a dark spot along the optical axis. In
Fig. 13(a) we set m # 1 for an axicon, in Fig. 13(b) we set m # 2 for a lens, and
in Fig. 13(c) we set m # 3 for a cubic radial phase variation, like the one discussed
in Eq. (29), for generating axial bursts. In Section 5, we form pairs of these complex
amplitude distributions for setting tunable focalizers. However, before that we con-
sider the following situation. If one employs an optical system for gathering images of
extended objects (rather than assessing the optical system by using the axial irradiance
distribution), one is interested in optical methods that are able to govern the impact of
focus error on the OTF.

3. INFLUENCE OF FOCUS ERROR ON THE OTF: AMBIGUITY FUNCTION

There are several optical methods for increasing the depth of field of an optical system
that gathers pictures of extended objects under noncoherent illumination. These
methods have disrupted the image quality chain, as is depicted in Fig. 14.

These methods are two-stage techniques. In the first stage, the optical system records
pictures while employing a preprocessing mask, which reduces the impact of focus
error on the MTF. Hence, the preprocessing masks ensure that several planar scenes,
located at different depths of the object field, suffer from virtually the same amount of
contrast reduction, but the MTF does not have zero values inside the passband. At the
second stage, image contrast can be corrected simultaneously for all different field
depths.

The above procedure can be traced back to Haeusler, who showed the usefulness of
superimposing several images in the same photographic plate while moving the op-
tical system [225]. Mino and Okano are to be credited for analyzing several amplitude
masks that weakened the influence of focus errors on the MTF [226]. Some of us have
proposed taking a single snapshot while using an amplitude mask (apodizer) that suit-
ably reduces equally the contrast of objects located at different depths of field. Since
the MTF has no zero values inside its passband, and it has only reduced values

Figure 13

Irradiance distributions generated by using a two-beam interferometer. In the three
depicted cases, the reference beam is a plane wave, and the probe beam has the com-
plex amplitude variations in Eq. (33) for (a) m # 1, (b) m # 2, and (c) m # 3.
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(as compared with the in-focus MTF), then in a lax manner, one can say that image
quality has been distributed “democratically” among the different planes composing a
3D scene. Hence, by applying simple digital inversion techniques, one can recover
simultaneously the contrast of different input planes [104].

The requirements for the preprocessing mask are the following. The mask should gen-
erate a MTF with low sensitivity to focus error. This generated MTF should not have
zero values inside its passband. For designing this type of mask, it was suggested to
employ the ambiguity function as a suitable mathematical tool [227]. Of course, since
the Wigner distribution function is the double Fourier transform of the ambiguity
function, then the results obtained using the ambiguity function can be worded in
terms of the Wigner distribution function. It was early recognized that optical tech-
nology may allow for producing nonconventional masks, and that there were several
digital algorithms for postprocessing.

Dowski and Cathey should be duly credited by introducing into optics the cubic phase
mask [228], which was known already in the radar community [229].

The cubic phase mask has the advantage, over previously described amplitude masks,
that it preserves light-gathering power. However, the cubic phase masks introduce
spurious oscillation in the MTF, which can be attenuated by using moderate absorbing
amplitude masks, as is suggested in Ref. [230].

In Fig. 15, we show the influence of focus error on an image of Lena when gathering
pictures with different masks, and different values of focus error. The results in Fig. 15
are complemented by the images in Figs 16 and 17. In these latter figures, we also
display the influence of focus error when gathering pictures with different masks and
different values of focus error. In Fig. 16 we display the variations on the MTF; in
Fig. 17 we display the variations on the PSF.

It is important to note that, along the columns of Figs. 15,16, and 17, the focus error
coefficient varies from zero to 3λ, in steps of λ∕2. Along the rows of Figs. 15, 16 and
17, we show the following variations. Along Row 1, we consider an optical system
with a clear pupil aperture. Along Row 2, the pupil aperture is covered with an am-
plitude mask that has moderate Gaussian amplitude variations. Along Row 3, the pupil
has a 2D cubic phase mask. Finally, in Row 4, the pupil has both an amplitude mask
with moderate Gaussian variations and a 2D cubic phase mask.

Figure 14

Pictorial of the image quality chain associated with the two-stage process (preprocess-
ing and postprocessing) for extending the depth of field of an optical system.

Review Vol. 7, No. 4 / December 2015 / Advances in Optics and Photonics 831



From Row 3 of Fig. 16, it is apparent that the cubic mask reduces the impact of focus
error on the MTF. The in-focus MTF as well as the out-of-focus MTF have nonzero
values inside a region that resembles a four-point star.

Furthermore, the values of the MTF have low values outside the Cartesian axis.
From Row 4 of Fig. 16, we observe that by adding a moderate attenuation mask
with a Gaussian profile, the values of the MTF are extended outside the Cartesian
axis. This last feature is helpful for avoiding the reduction in contrast, as was
already apparent from the comparisons between the images in the last two rows
of Fig. 15.

The results in Fig. 17 help us to assess further the advantages of employing a moderate
attenuation filter when using the cubic phase mask. From a simple comparison
between the images in the last two rows of Fig. 17, we observe that a moderate
attenuation mask (with Gaussian profile) also helps to reduce the spread of the
2D PSF.

Dowski and Cathey denoted the pre-processing operation as “encoding,” and the post-
processing operation as “decoding.” Their notation follows Haeusler’s proposal, since
both notations mimic the usage of the well-known two-step process in optical holog-
raphy. Perhaps this is not the best notation. However, curiously enough, this wording
has inspired further research.

In what follows we review the above described ideas, by noting that in several
branches of applied optics, it is convenient to employ local frequencies, or phase-
space representations [231–234]. We start by discussing a simple manner for
representing the optical characteristics of a 1D pupil mask in phase space. For our

Figure 15

Array of pictures for displaying the variations in image quality, with variable focus
error. As is indicated at the top of this figure, along the columns, the focus error co-
efficient varies in steps of λ∕2. Along the rows, we show the use of four different pupil
masks that help to reduce the influence of focus error on the MTF.
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discussion, we denote as Q!μ" the complex amplitude transmittance of a pupil mask.
Hence, the pupil mask generates the coherent PSF:

q!x" #
Z

∞

−∞
Q!μ" expfi2πxμgdμ: (34)

Figure 16

Array of pictures displaying the variations of the MTF with variable focus error, when
using the same pupil masks that are used in Fig. 15. Along the columns, the focus error
coefficient varies in steps of λ∕2.

Figure 17

Array of pictures displaying the variations of the irradiance PSF with variable focus
error, for the same pupil masks that are used for obtaining the results in Fig. 16.
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Next, we define the product spectrum of the pupil mask as
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"
: (35)

If one uses the inverse relationship of Eq. (34) in Eq. (35), one obtains that
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(36)

By assuming that there is a 2D optical mask whose amplitude transmittance is equal to
P!μ; ν", in Eq. (35), then its Fraunhofer diffraction pattern has the following complex
amplitude distribution:

p!x; y" #
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∞
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Z
∞

−∞
P!μ; ν" expfi2π!xμ$ yν"gdμdν: (37)

By substituting Eq. (36) into Eq. (37), it is straightforward to show that the 2D Fourier
transform of the product spectrum is the product space:
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"
q%
!
x − y

2

"
: (38)

As indicated in Fig. 18, we note that the product spectrum of the pupil mask and the
product space of the coherent PSF are Fourier pairs.

Next we note that, on the one hand, the Wigner distribution function of Q!μ", or
equivalently the Wigner distribution function of q!x", is

Figure 18

Schematics of a classical optical processor used for displaying the product space as the
Fraunhofer diffraction pattern of the product spectrum in Eq. (35).
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It has been noted that the mathematical operations in Eq. (39) can be implemented
optically by employing anamorphic optical processors, such as those depicted in
Fig. 19, which are discussed extensively in Refs. [235–239].
Now, on the other hand, we note that the ambiguity function of Q!μ" or, equivalently,
the ambiguity function of q!x", is
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Hence, it is straightforward to show that

F!x; ν"
Z

∞
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−∞
A!μ; y" expfi2π!xμ − νy"gdμdy: (41)

Figure 19

Schematics of the use of anamorphic optical processors for transforming the product
spectrum into (a) the ambiguity function and (b) the Wigner distribution function. The
depicted cylindrical lens has the same focal length as that of the portrayed spherical
lenses.
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Of course, the inverse relationship of Eq. (40) is

A!μ; y" #
Z

∞
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Z
∞

−∞
F!x; ν" expf−i2π!μx − yν"gdxdν: (42)

As was first suggested in Ref. [240], Fig. 20 summarizes pictorially the above results.
The central arrows are used for denoting 2D Fourier transformations, while the periph-
eral arrows denote 1D Fourier transforms that are implemented by using anamorphic
optical processors. In what follows, we employ the rectangular window Q!μ" #
rect!μ∕2Ω" for illustrating the mathematical operations involved when evaluating
phase-space representations. First, we evaluate the product spectrum. Second, we ob-
tain the product space. Third, we find the mathematical expression for the Wigner
distribution function. Fourth and finally, we obtain the ambiguity function of the clear
pupil aperture. The product spectrum of a rectangular window is
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The result in Eq. (43) describes a binary screen with a rhomboidal clear aperture. Its
amplitude transmittance defines in phase space the support of any bandlimited optical
signal. Next, we note that as a consequence of Eq. (39), the product space of the
coherent PSF is
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From Eq. (43) it is straightforward to evaluate the Wigner distribution function:
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Again from Eq. (43), one can evaluate the normalized version of the ambiguity
function:
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Now, one of the many fascinating features of phase-space representations is the
following. If one evaluates the OTF of the generalized pupil aperture,
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one obtains
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In Eqs. (47) and (49) we denote as W 2;0 the wavefront aberration coefficient describ-
ing focus error in an optical system. Again, the Greek letter lambda denotes the
wavelength of the optical radiation.
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As pointed out in Eq. (39), we know that the ambiguity function of the complex
amplitude transmittance T!μ" is
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2

"
expfi2πyνgdν: (49)

Now, as depicted in Fig. 21, from a simple comparison of Eqs. (47) and (48) we note
that
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μ;
2W 2;0

λΩ2
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"
# HT !μ;W 2;0": (50)

In other words, for a given value of W 2;0, the values of the out-of-focus OTF are
contained along the line

y #
#
2μ
λΩ2

$
W 2;0: (51)

Since in a photographic display one can visualize only the modulus of the ambiguity
function, then along the previous line, one visualizes the MTF. Furthermore, as is also
depicted in Fig. 21, if one selects a fixed value of the spatial frequency, say along the
vertical line μ # σ, then the values of the ambiguity function are the values of the out-
of-focus OTF. That is,
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W 2;0

"
# HT !σ;W 2;0": (52)

Therefore, the display of the ambiguity function is a highly redundant picture that
contains all possible values of the MTFs of a pupil aperture mask T!μ" for variable

Figure 20

Diagram of the Fourier transformations that are required for interrelating the complex
amplitude distributions used in phase-space representations. Single-headed arrows de-
note 1D Fourier transforms, which are implemented by using the anamorphic process-
ors in Fig. 19. Double-headed arrows denote a 2D Fourier transform operation, which
is implemented by using a classical optical processor.
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focus error. This is a remarkable result that allows us to visualize the impact of focus
errors on the MTF. Additionally, as we discuss next, the ambiguity function is a very
helpful diagram for identifying pupil masks that reduce the influence of focus error on
the OTF. To that end, it is relevant to note the following. If a pupil mask has an ambi-
guity function that spreads along the y axis, in the !μ; y" plane, then according to
Eqs. (51) and (52), the values of the MTF change slowly with focus error.
Consequently, these masks are able to extend the depth of field. We have noted that
the spread of the ambiguity function along the y axis has a peculiar elongated
distribution, which is called the “bow-tie effect” [241].

In Fig. 22 we show the ambiguity functions of three different pupil masks: in
Fig. 22(a) is the clear pupil aperture, in Fig. 22(b) is a cubic phase mask, and in
Fig. 22(c) is a moderated Gaussian apodizer that covers a cubic phase mask.
From Figs. 22(b) and 22(c), it is apparent that some masks are able to generate
ambiguity functions that have elongated distributions along the vertical axis.
According to the previous results (in Fig. 21), these elongated distributions indicate
that the mask is able to reduce the influence of focus error in the OTF. As previously
indicated, the elongated distribution is referred as the bow-tie effect. In Sections 4 and
5, we note that, rather than using a single phase mask, it is convenient to use a pair of
phase masks for controlling the presence of the bow-tie effect, or, if you will, for
governing the depth of field of an optical system, while preserving a fixed full pupil
aperture.

Next, we express the out-of-focus OTF as a Taylor series expansion. We show that
certain masks are able to reduce, by one-half, the number of terms of the Taylor series.
If one expresses the OTF versus focus error as a Taylor series around W 2;0 # 0, one
obtains

Figure 21

Graphical procedure for extracting the values of the MTF versus focus error by using
the values of the ambiguity function associated with the pupil complex amplitude
transmittance. At the left-hand side, we use broken lines with double arrows to depict
the variations of the MTF with focus error, at a fixed spatial frequency. At the right-
hand side, we identify the intersection of two broken lines as the value of the MTF. As
is shown in the text, the slope of the tilted broken line is related to the focus error
coefficient, while the vertical broken line identifies a fixed spatial frequency.
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In the above series expansion, we note that the m-fold derivative is
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Trivially, since the variable ν to the power m # 2n$ 1 is an odd function, the integral
in Eq. (47) can be equal to zero provided that the remaining part of the integrand is an
even function in the variable ν. That is,
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By expressing the complex amplitude transmittance in terms of its modulus and its
phase, we conclude that the condition in Eq. (55) is achieved if

T!ν" # jT!ν"j expfiχ!μ"g # jT!−ν"j expf−iχ!−μ"g # jT!ν"j expf−iχ!−μ"g: (56)

Thus, for reducing the impact of focus errors on the OTF, one needs to use phase
variations that are odd functions, such as those depicted in Fig. 23, which can be
expressed as
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$
: (57)

In Eq. (57) the Latin letter a denotes the optical path difference. The signum function
is denoted as sgn!ν", as is described in Ref. [242]. The phase variations are described
by monomial to the power n. At the left-hand side of Fig. 23, we display the phase
profiles associated to Eq. (57) for n # 1, 2, 3, 4, 5, 6, 7, 8, and 9. At the right-hand side
of Fig. 23, we show the interferograms for n # 2, 3, 4, 5, 6, 7, 8, and 9.

Figure 22

Display of the modulus of the ambiguity functions obtained by using three different
pupil masks. By employing the procedure in Fig. 21, one can identify the impact of
focus error on the MTF. The last two pictures exhibit the bow-tie effect on the ambi-
guity function.
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From Fig. 24 it is apparent that this type of phase mask is able to reduce the influence
of focus error. Furthermore, we note that, by using the asymmetric phase variations of
high order (say n ! 5, 6), one preserves the overall appearance of the input picture.

It is interesting to note that the power n, in Eq. (57), can be indeed a real number. This
latter type of phase mask is denoted as a fractional power wavefront [243]. More
details are given in what follows.

Here, it is convenient to recognize that one can obtain an optical display of the ambi-
guity function by employing an anamorphic processor, as is shown in Fig. 25. We
recognize that along any vertical line of the ambiguity function (depicted as a set

Figure 23

Asymmetric phase profiles and their associated interferograms. At the left-hand side,
we plot the monomials sign"μ# jμ∕Ωj to the power n ! 1, 2, 3, 4, 5, 6, 7, 8, 9. At the
right-hand side, we display the 2D interferograms that are generated employing a
plane wave, as a reference beam, and the masks that have the 2D versions of the phase
profiles at the left-hand side.

Figure 24

Array of pictures depicting the images that one gathers when using an optical system
that suffers from focus errors, and if its pupil aperture is covered with the phase mask
in Fig. 23. Along the rows of this array of pictures, we increase the values of the focus
error coefficient, W 2;0 ! 0, λ, 2λ, and 3λ. Along the columns, we show the changes
when increasing the power of the asymmetrical phase masks.
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of broken lines in Fig. 25), the complex amplitude distribution comes from the
Fraunhofer diffraction pattern of a vertical line along the product spectrum
P!μ; ν". It is convenient to note that the product spectrum can be thought of as being
formed by a continuous set of rectangular windows. In mathematical terms,

P!μ; ν" # rect
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2Ω − jμj

"
rect

!
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"
: (58)

Hence, the complex amplitude distribution along the y axis of the ambiguity function
can be thought of as being formed by a continuous set of Fraunhofer diffraction
patterns. That is,
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Along this type of conceptual chart, we consider other possibilities. For example, let
us assume that at the product spectrum any vertical line has now a quadratic phase
factor,
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For obtaining this type of product spectrum, one needs a cubic phase mask. Then, the
anamorphic optical processor generates the following ambiguity function:
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Figure 25

Schematics for visualizing, along a vertical line, the variations of the ambiguity func-
tion as a 1D Fraunhofer diffraction pattern. (a) The formation of a 1D Fraunhofer
diffraction pattern of a rectangular aperture. (b) Depiction of the formation of a
1D Fraunhofer diffraction pattern of a cubic phase mask. (c) The 1D Fraunhofer dif-
fraction pattern of the moderate Gaussian apodizer that covers a cubic phase mask.
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It is apparent from Eq. (61) that, along the y axis, the ambiguity function is now
composed by a continuous set of Fresnel diffraction patterns of rectangular windows.
Then, the ambiguity function spreads over the !μ; y" plane. As a result, the OTF has
low sensitivity to focus errors. One can extrapolate this result by exploring the use of
high-order aberration polynomials at the product spectrum, as was indicated in
Eq. (57). However, it is relevant to note that these phase-only masks introduce spu-
rious oscillations on the MTF. For reducing this undesirable feature, next we explore
the use of the following amplitude transmittances:

Qs!ν" # 1 −
!!!!
ν
Ω

!!!!
s
; (62a)

Qs!ν" # exp

"
−c

!!!!
ν
Ω

!!!!
s
#
: (62b)

In Eq. (62a) the Latin letter s is a real positive number that denotes the power of the
attenuation monomial. In Eq. (62b) the lowercase letter c denotes a damping factor in
the amplitude mask, and, again, the Latin letter s is the power of the monomial inside
the argument of the exponential function. Here it is relevant to recognize the following
notation for the Gaussian-like profiles. As depicted in Fig. 26, if in Eq. (62) we set
s # 2, then we have a Gaussian attenuating mask. For 0 < s < 2, we have a
sub-Gaussian mask, and if s > 2, then we have a super-Gaussian mask. When refer-
ring to any value of s, we employ the generic notation hyper-Gaussian mask [244].

It is known that amplitude masks are able to reduce the influence of focus errors on the
MTF. However, amplitude masks reduce the light-gathering power of an optical sys-
tem. In what follows, we show that amplitude masks with moderate absorption are

Figure 26

Amplitude transmittances associated with several types of hyper-Gaussian masks. At
the top, we display the graphs of the amplitude transmittance profiles of (a) sub-
Gaussian masks, (b) Gaussian masks, and (c) super-Gaussian masks. At the bottom,
we show pseudo-color variations that encode the 2D versions of the amplitude trans-
mittance at the top of this figure.
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useful for reducing spurious oscillation of the MTF, which is caused by phase masks.
To our end, in Fig. 27 we display the images that one can obtain when using
amplitude masks.

It is apparent from Fig. 27 that these absorption masks are able to reduce the influence
of focus error, inside the range jW 2;0j ≤ 3λ. Furthermore, we note that when using
amplitude masks (as it happens when using high-order phase masks, say for
n ! 5, 6). one preserves the overall appearance of the input picture. In what follows
we recognize that the actual importance of using the amplitude masks is depicted
in Fig. 28.

We show in Fig. 28(a) that by using a cubic phase mask, the MTF (in decibels) ex-
hibits spurious oscillations around the tendency curve. In Fig. 28(b) we show that one
can mitigate these spurious oscillations by using Gaussian amplitude masks, which
have moderate absorption coefficients. Furthermore, by comparison of the normalized
MTFs in Figs. 28(c) and 28(d), we note also that the amplitude masks increase the
bandwidth of the MTFs. Hence, we claim that the amplitude masks have a favorable
impact, for extending the depth of field, when one employs the cubic phase mask.

Now, in Fig. 29 we present an array of pictures for making visual comparisons, which
illustrate further the advantages of using moderate Gaussian absorption masks, which
work together with cubic phase masks. Along Row 1 of Fig. 29, we display the
pictures obtained when using only a cubic phase mask (with an optical path difference
of a ! 15). Along Row 2 of Fig. 29, we show the pictures obtained when one covers
(the above described phase mask) with a Gaussian absorption mask (s ! 2 and
c ! 7π∕10). From Fig. 28 and from a simple comparison between the Row 1 and

Figure 27

Array of images obtained when using amplitude masks over the pupil aperture. Along
the rows of the array, we increase the value of the focus error coefficient,W 2;0 ! 0, λ,
2λ, 3λ. Along the two initial columns, as is indicated at the top of this figure, the pupil
mask has the amplitude filter in Eq. (62a) with s ! 1∕2. Along the two intermediate
columns, the amplitude filter has a power s ! 2. Along the final columns, the ampli-
tude transmittance is the one in Eq. (62b) with c ! 7π∕10 and s ! 2.
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the Row 2 of Fig. 29, we claim that, for reducing the impact of focus error while
avoiding the presence of spurious oscillations, it is convenient to employ both a phase
mask and an amplitude mask. Toward this goal, we analyze the use of masks that have
the following complex amplitude transmittance:
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; (63)

In Fig. 30 we show the main features of the following complex amplitude transmit-
tance:
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Of course, there is a wide range of values that the coefficients a and c can take. The
same is true for the values of m and s. After several numerical evaluations, we have
suggested employing the following complex amplitude transmittance:

Figure 28

Visualizing the influence of a moderate absorption mask on the MTF. In (a) we show
in decibels the in-focus MTF (red curve) and the out-of-focus MTF (blue curve) of a
cubic phase mask. In (b) we show, also in decibels, the two MTFs that are obtained
when using a moderate absorption mask (with Gaussian profile) and the cubic phase
mask. In (c) and (d), we plot the equivalent results, if one evaluates the normalized
versions of the MTFs.
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(65)

For visualizing this proposal, we employ Fig. 30. At the margins of the interferogram,
we indicate the phase profile of the fractional wavefront.

Furthermore, along the margins of the of the pseudo-color display that encodes the
attenuation values, we depict the amplitude variations of the hyper-Gaussian mask:
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Here it is relevant to indicate that the OTF is never invariant to focus error inside the
passband of the optical system. However, by properly selecting a pupil mask and
within a certain range of values of W 2;0, the square value of the difference between
the out-of-focus OTF and the in-focus OTF can have rather small values of η. That is,

0 < jH!μ;W 2;0" − H!μ; 0"j2 # η ≪ 1: (67)

Again, strictly speaking, the value of η is never equal to zero inside the passband.
However, if one uses some of the masks in Eq. (66), inside the range
0 ≤ W 2;0 ≤ 3λ, then η # 10−6. In the following section, we describe methods for im-
plementing tunable versions of the phase masks, as well as tunable versions of the
amplitude masks. We show that by using tunable versions, one can suitably govern
the depth of field, while the optical system remains working at full pupil aperture.

Figure 29

Array of pictures for visualizing the influence of a moderate absorption mask on the
MTF. Along the columns of this array, we increase the value of the focus error co-
efficient. Along Row 1 we display the images gathered with a cubic phase mask.
Along Row 2, we show the images obtained when using an amplitude mask with
a Gaussian profile covering the cubic phase mask at the pupil aperture. Along
Row 3, we show the images obtained after an inverse digital filter is applied to
the pictures along Row 2 of this figure.
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4. PHASE CONJUGATE PAIRS

In what follows we consider an admittedly naïve approach, yet a very useful one, for
exploiting the mathematical operations involved when evaluating the ambiguity
function
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2

"
expfi2πyνgdν: (68)

Inside the integrand in Eq. (68), trivially, we recognize the kernel of the Fourier trans-
form as well as the product of two complex amplitude distributions. One complex
amplitude distribution is the complex conjugate of the other. Furthermore, the two
complex amplitude distributions are laterally displaced by the spatial frequency σ.

In Fig. 31 we depict a coherent optical processor that performs the same operation.
However, now the complex amplitude distributions are associated to the complex am-
plitude transmittances of two masks, which are physically displaced by the spatial
frequency σ. At the pupil aperture of the optical processor, the complex amplitude
transmittance of the first mask is T 1!ν", and the complex amplitude transmittance
of second mask is the complex conjugate of the first element, T2!ν" # T%

1!ν". The
pair is denoted here as a complex conjugate pair.

If a lateral displacement is introduced between the elements of the complex conjugate
pair (say by the value σ), then one implements the following complex amplitude
transmittance:
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The amplitude transmittance in Eq. (69) is the generalized pupil function of the optical
processor in Fig. 31. We remember that this complex amplitude transmittance is a

Figure 30

Pictorials describing a complex amplitude filter that reduces the influence of focus
error and spurious oscillations. At the left-hand side, upper corner, we present the
interferogram. At the margins of the interferogram, as blue curves, are the phase pro-
files. At the left-hand side, lower corner, we display the pseudo-color representation of
the amplitude variations of the 2D mask. Again, at its margins, as blue curves, we plot
the amplitude profiles. At the right-hand side, we plot the MTF for variable focus error
in the interval 0 ≤ W 2;0 ≤ 3λ.
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vertical line in the product spectrum, which is shown in Fig. 25. For the complex
conjugate pair, the coherent PSF is
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By a simple comparison of Eq. (68) and Eq. (70), we recognize that, when using a
complex conjugate pair, the coherent PSF is equal to a vertical line along the ambi-
guity function of T 1!ν", which is the complex amplitude transmittance of one element
of the pair. This is a noteworthy result. By physically using a pair of phase masks
(in a coherent optical processor) one can understand the influence that a single mask
has on the out-of-focus OTF. Now, if we take into account the influence of focus error
in the optical processor, then the irradiance PSF is

h!x; σ;W 2;0" #

######

R∞
−∞ T1

$
ν$ σ

2

%
T%
1

$
ν − σ

2

%

exp
n
i2π

&
W 2;0
λ

'$
ν
Ω
%
2
o
expfi2πxνgdν

######

2

: (71)

Hence, it is straightforward to obtain the OTF associated to the PSF in Eq. (71), which
is
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It is apparent from Eq. (72) that now the expression for evaluating the OTF resembles
again the mathematical operation for obtaining an ambiguity function. However, now
the mathematical operation uses the ambiguity function of one element of the pair.
These general results are illustrated next, by recognizing that the above method is

Figure 31

Schematics of an optical processor that employs two spherical lenses (with fixed focal
length f ) and a varifocal lens as a spatial filter, which is located at the Fraunhofer
plane.
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useful for setting several tunable optical devices, which have interesting properties
under noncoherent illumination.

4.1. Varifocal Lenses and Axial Scanners
As pointed out in the introduction of this paper, Kitajima apparently was the first person
to describe an optical device for implementing varifocal lenses. Later on, an improved
version was discovered, independently and simultaneously, by Lohmann and Alvarez;
as was indicated in the introduction. Next, we discuss a 1D model of these proposals.
Let us consider that the complex amplitude transmittance of one element of the pair is

T1!ν" # exp

!
i2πa

"
ν
Ω

#
3
$
rect

"
ν
2Ω

#
: (73)

In Eq. (73) the lowercase letter a denotes the optical path difference in units of the
wavelength λ. When this optical element is used as a complex conjugate pair, one sets
the following generalized pupil function:
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The complex amplitude transmittance in Eq. (74) represents a lens with tunable optical
power, which is located at the frequency domain. As is depicted in Fig. 32, this optical
device can be applied to implement a telecentric axial scanner. Heuristically, from the
viewpoint of geometrical optics, one can describe the behavior of this device as follows.
On the one hand, at the top of Fig. 32, we note that if σ # 0 then the point source
(located at z # 0) is able to pass through the pinhole, which is placed at the image
of the telecentric processor. On the other hand (as depicted at the bottom of
Fig. 32), by laterally shifting the elements of the complex conjugate pair, a point source
located at z ≠ 0 is able to pass through the pinhole.

For the above application, and from the viewpoint of technical optics, it is relevant to
express the focus error coefficient in terms of the axial displacement z; for fine details,
see the following references [245]. Here we use Newton’s imaging formula for a point
source located at a distance z, before the front focal plane of the optical processor. Its
image is located at the distance z0 # −f 2∕z. Since at the Fraunhofer plane the refer-
ence sphere is a plane wave, then the focus error aberration coefficient is
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In Eq. (75) we denote the f -number as f #. This means that a focus error coefficient
that is equal to 3λ (with λ ≈ 5 × 10−7 m) implies a longitudinal displacement equal to
z # −24!f #"2. For example, if f # # 11, then z ≈ −1.5 mm. Now, from Eqs. (74) and
(75), we note that, for canceling the wavefront error associated to the point source
position z, we require that
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In Eq. (76) we denote as N the refractive index of the optical glass, the Latin letter e is
the physical thickness of one element of the phase conjugate pair, and the lateral
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displacement is equal to d ! λf σ. As before, the pupil aperture is h ! λfΩ. Hence,
from Eq. (76), we obtain

d !
!

h
"N − 1#e" f ##2

"
z: (77)

For the above numerical example, if N ! 1.5 and e ! 0.99 mm, we obtain that
d ≈ h∕40, which is indeed a feasible value.

4.2. Quartic Phase Masks for a Tunable Cubic Phase Mask
Of course, one can extrapolate the previous result for proposing a tunable, or control-
lable, cubic phase mask [246,247]. In what follows, we discuss an extension to
Lohmann–Alvarez lenses by considering the use of the following transparent mask:
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By employing this phase mask and its complex conjugate mask, one can generate the
following complex amplitude transmittance:
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Figure 32

Schematics of an axial scanning technique. We employ geometrical optics rays for
indicating the following. At the top, we show the image of a point source that is able
to pass through a pinhole located at the output plane. At the bottom, we show another
point source that is now located at a different positon along the optical axis. Due to the
influence of the varifocal lens, the image of this second point source is now able to
pass through the same pinhole.
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It is clear from Eq. (79) that, by changing the value of σ, we can change the optical
path difference of a cubic phase mask. In other words, one can control the optical path
difference of the cubic phase mask that extends the depth of field. Therefore, without
modifying the size of the pupil aperture, one can control the influence of focus error on
the MTF by laterally displacing a pair of complex conjugate masks, where each mask
has the complex amplitude transmittance in Eq. (79). We note that, despite the fact that
the proposed phase mask generates a linear phase variation, in the variable ν, this term
is irrelevant from the viewpoint of the MTF. In other words, from Eq. (79) we
recognize that the OTF is
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It is apparent from Eq. (80) that the MTF is independent from the linear phase factor
outside the integral. The proposal of a phase conjugate pair (using two quartic phase
elements) enables us to tune the depth of field by selecting the proper amount of lateral
displacement σ. The whole operation can have the same fully open pupil aperture,
provided that the elements of the phase conjugate pair are larger than the pupil.
This condition implies that the members of the pair are magnified by a factor L, which
is a real number such that L > 1. In practical terms, this means that we do not pay
attention to the influence of this function when evaluating Eq. (80).

4.3. Tunable Sinusoidal Phase Mask
For having an alternative analytical model for the use of phase masks that extend field
depth, one of us proposed analyzing the behavior of a phase mask that has a sinusoidal
profile, as depicted with the red curve in Fig. 30. This phase mask is also useful for
describing the bow-tie effect, as was previously indicated in Fig. 22.

Ostensibly from Fig. 33, a sinusoidal phase profile approximates the profile of a cubic
phase mask. Other authors have also considered the use of phase profiles that obey
trigonometric relationships [248,249]. In what follows, we discuss a simple analytical
model for implementing a tunable sinusoidal phase mask. To our end, each member of
the pair now has a cosinusoidal phase profile [250]. This approach has been recently
revisited by other authors [251]. Now, the complex amplitude transmittance of the first
element of the pair is
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In Eq. (81) and Fig. 33, we consider only a section of a cosinusoidal phase variation.
We show in what follows that this phase mask is useful for governing the depth of
field, while working at full pupil aperture. By employing the above mask and its com-
plex conjugate mask, it is easy to show that the complex amplitude transmittance of
the phase conjugate pair is
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It is apparent from Eq. (82) that, by changing the value of σ, we can change the optical
path difference of a section of a sinusoidal phase mask. Hence, the proposed phase
conjugate pair is a tunable device. The out-of-focus OTF associated to Eq. (82) can be
obtained by evaluating
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As is shown in Appendix B, the out-of-focus OTF is
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Of course, Eq. (84) contains as a particular case the in-focus OTF
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In Fig. 34, for a given row, along the columns we display the variations of the MTF for
W # 0, 1, 2, and 3. For a fixed column, along the rows, we display the variations of
the MTF for values of σ # 0, 8, 16, and 32. From Fig. 34, we observe that, by in-
creasing the lateral displacement (between the members of the phase pair), the MTF

Figure 33

Graphical comparison between four different phase profiles, which are useful for ex-
tending the depth of field. Three masks have phase variations that follow trigonometric
functions. As a reference, we also plot the cubic profile.
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has low sensitivity to focus error. Hence, we claim that by controlling the lateral
displacement, one can govern the depth of field, without modifying the size of the
pupil aperture.

Before ending Section 4, we describe the use of a pair of amplitude masks that are
useful for setting a Gaussian spatial filter with adjustable half-width [252].

4.4. Tunable Gaussian Mask
For the present task, we use a pair of amplitude masks that are laterally displaced as
the Alvarez–Lohmann lenses. The first mask has an amplitude transmittance that is
equal to
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In Eq. (86), as before, we use a lowercase letter c for denoting a dimensionless damp-
ing factor of the hyper-Gaussian mask. We have also included a factor L > 1, for
taking into account that the length of the mask is L!2Ω". However, we note that
the optical system has a pupil aperture whose length is equal to 2Ω. Next, in what
follows, we indicate that the masks have physically meaningful amplitude transmit-
tances. At the lower edge of the first mask (outside the pupil aperture), the amplitude

Figure 34

Array of graphs for describing the evolution of the MTF versus focus error, if one
introduces a lateral displacement between the elements forming a phase conjugate
pair. As is discussed in the main text, each element has a cosinusoidal phase profile
for generating a tunable sinusoidal phase profile. Along the columns of this figure,W
denotes the focus error coefficient in units of wavelength, W # W 2;0∕λ. The Greek
letter σ denotes the amount of lateral displacement between the elements forming the
phase pair.
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transmittance is T 1!−LΩ" # 1, while at the upper edge, outside the pupil aperture, the
amplitude transmittance is T1!LΩ" # exp!−2c". The amplitude transmittance of the
of the second mask is

T2!ν" # exp

!
−c

"
1 −

#
ν
LΩ

$
3
%&

rect

#
ν

2LΩ

$
: (87)

Here, it is convenient to recognize that, at the lower edge of the second mask (beyond
the pupil aperture), the amplitude transmittance is T 2!−LΩ" # exp!−2c", while at the
upper edge, outside the pupil aperture, the amplitude transmittance is T2!LΩ" # 1.
The two masks working as a pair generate the amplitude transmittance,

T!v; σ" # T1
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rect
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; (88)

or, equivalently,

T!ν; σ" # exp

!
−2c

"
1$

#
σ

2LΩ

$
3
%&

exp

!
−
#
3cσ
L3Ω

$#
ν
Ω

$
2
&
rect

#
ν
2Ω

$
: (89)

In Fig. 35 we depict schematically the use of the above masks, which are already
shifted by the spatial frequency σ. From Eq. (89) and from Fig. 35, it is apparent that
inside the pupil aperture, the overall amplitude transmittance varies as a Gaussian
function.

At the center of the pupil, the amplitude transmittance is

T!0; σ" # exp
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"
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#
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%&

: (90)

At the edges of the pupil, the amplitude transmittance is

T!%Ω; σ" # exp
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: (91)

Figure 35

Graphical representation of the technique for generating a Gaussian profile with tun-
able half-width. The curve in blue represents the amplitude transmittance of the mask
in Eq. (86), while the curve in red represents the amplitude transmittance of the mask
in Eq. (87). The curve in black is the resultant amplitude transmittance in Eq. (89).
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Hence, the width of the Gaussian profile depends linearly with the lateral displace-
ment σ. Thus, by selecting the value of σ, one can govern the amplitude transmittance
ratio from the center of the pupil to the edges. That is,

Γ!σ" #
T!0; σ"

T!$Ω; σ"
# exp

!
−3 cσ

L3Ω

"
: (92)

Finally, we recognize that if one uses simultaneously the tunable cubic phase mask
and the tunable Gaussian amplitude mask, then one has 2 extra degrees of freedom for
setting the preprocessing filter.

In Fig. 36 we show an array of pictures that display the changes of the ambiguity
function, as one modifies either the phase delay (columns along the array pictures)
or the value of the damping factor (rows along the array of pictures).

Next, we discuss the 2D version of the technique for generating a Gaussian
amplitude profile, with tunable half-width, in 2D. For the first mask, the amplitude
transmittance is
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(93)
For the second mask, the amplitude transmittance is
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(94)

At the corners of the masks, the amplitude transmittance reaches either the maximum
value that is equal to unity, or minimum value that is equal to exp!−8c". Next, we

Figure 36

Array of phase-space pictures that display the changes on the modulus of ambiguity
functions, which are caused by the use of a tunable cubic mask (whose optical path
difference increases along the columns of the array) and the use of tunable Gaussian
masks (whose damping coefficient increases along the rows of the array).
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place the two mask in contact, and we introduce a lateral displacement σ, between the
masks. Hence, the overall amplitude transmittance inside the pupil aperture is
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or equivalently,
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We note from Eq. (96) that, indeed, the overall amplitude transmittance varies, as a 2D
Gaussian function inside the pupil aperture, which is a rectangular window. In the
following section, we discuss a different method for implementing masks with circular
symmetry.

4.5. Vortex Pairs: Phase Masks with Circular Symmetry
Several years ago, out of curiosity, we identified the sufficient and necessary condi-
tions for obtaining self-images in polar coordinates !r;φ", as is discussed in refer-
ence [253]. One of us recognized that the eigenfunctions of the Helmholtz
equation are the helicoidally Bessel beams:
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In the frequency domain, the eigenfunctions in Eq. (97) are a set of rings, which are
known as the Montgomery rings [254]:
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In Fig. 37 we plot the location of these rings for p # Mλ when M # 10; hence, the
radii are

ρ #
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!M 2 − m2"

q
; m # 0; 1;…9: (99)

A particular case of the above eigenfunctions was identified later on, under the name
“nondiffracting beam” [255]. As was pointed out in Eq. (30), if one employs the
eigensolutions in Eq. (98) with n ≠ 0, then the eigensolutions are able to sustain a
dark central spot.

In recent publications, we have revisited the use of helical modulated masks for pro-
ducing nonconventional radially symmetric focalizers, as well as radially symmetric
apodizers [256].

As is schematically depicted in Fig. 38, for implementing radially symmetric, tunable
focal devices, we proposed the use of two helically modulated elements, which work
as pair. This pair is here called the vortex pair. Here, we consider first the presence of a
free-form refractive element, whose complex amplitude transmittance is
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T 1!ρ;φ" # expf−i2πaR!ρ"φgcirc
!
ρ
Ω

"
: (100)

In Eq. (100) the Greek letters ρ and φ denote the polar coordinates over the pupil
aperture, which is located at the Fraunhofer plane of the optical processor in
Fig. 38. We represent the finite size of the pupil aperture by using the circ function,
which is equal unity if ρ ≤ Ω. Otherwise, the circ function is equal to zero. At this
stage of our discussion, the function R!ρ" represents any real radial function. The
Latin letter a is the maximum value of the optical path difference. That is,

a # !N − 1"
e
λ
: (101)

In Eq. (101) the uppercase N is the value of the refractive index of the material, which
is used for building the free-form refractive element. We employ the letter e for

Figure 37

Schematics describing the geometrical location of the Montgomery rings at the
Fraunhofer plane. Each ring is useful for synthesizing one of the eigensolutions in
Eq. (98).

Figure 38

Schematics of a classical optical processor that employs a vortex pair at the Fraunhofer
diffraction plane. The gray arrows, at the periphery of the circles in green, represent
the need of introducing an in-plane between the elements of the pair.
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denoting the maximum thickness of the refractive element, and the Greek letter λ rep-
resents the wavelength of the optical radiation. Next, we consider a second free-form
element whose complex amplitude transmittance is the complex conjugate of
Eq. (100). That is,

T2!ρ;φ" # expfi2πaR!ρ"φgcirc
!
ρ
Ω

"
: (102)

Now, it is convenient to combine the two above refractive elements for setting a vortex
pair. If we introduce an in-plane rotation (say by an angle β) between the elements of
the pair, we obtain the following complex amplitude transmittance:
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From Eq. (103) we recognize that the complex amplitude transmittance of the vortex
pair no longer depends on angle φ. In other words, the complex amplitude transmit-
tance of the vortex pair has only radial variations. Furthermore, it is also apparent from
Eq. (103) that angle β controls the maximum value of the optical path difference.

The above result has truly outstanding consequences. In principle, now one can select
any radial phase variation R!ρ", and then one can govern its optical path difference;
simply by rotating the elements of the vortex pair. In Fig. 39, we show three interfero-
grams that are associated to three different masks, which have phase profiles with both
radial and helical variations. We emphasize here that an important particular case is the
implementation of a varifocal lens. To this end, the radial phase variation should be
quadratic. that is, R!ρ" # !ρ∕Ω"2. Hence, from Eq. (103) we have that
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Then, we recognize that Eq. (104) describes the complex amplitude transmittance of a
varifocal lens whose optical power is
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2!N − 1"e

h2

&
β # βK0: (105)

Figure 39

Three interferograms obtained by using a plane wave as the reference beam and a
probe beam that has both helical variations and radial variations. In (a), the radial
function is equal to a constant R!ρ" # 1. In (b), the radial function describes an axicon
R!ρ" # !ρ∕Ω". In (c), the radial function represents a lens R!ρ" # !ρ∕Ω"2.
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The previously discussed simple results are applied next for designing nonconven-
tional zoom systems that use varifocal lenses. However, before that, it is pertinent
here to make the following remark about the optical methods for continuously chang-
ing the maximum value of the optical path difference in a phase mask.

We remember that the first tunable version of the cubic phase mask, as discussed in
Section 4.2, is able to control the depth of field without changing the size of the pupil
aperture. This tunable phase mask was obtained as an extension of the Lohmann–
Alvarez technique. Next, we note that rather recently, Acosta and Bara-Viñas sug-
gested a method that relies on rotating Zernike´s plates [257]. We duly credit
Demenikov et al. for proposing a tunable phase mask that controls the depth of field
by rotating two phase plates [248]. However, we recognize that, on the one hand, the
two latter techniques employ masks that have phase variations expressible in terms of
trigonometric functions on the polar angle. On the other hand, we observe that in the
previously discussed vortex pair technique, each mask has linear phase variations in
the polar angle itself.

5. NONCONVENTIONAL ZOOM SYSTEMS

In Fig. 40 we depict schematically the image formation process between two conju-
gated planes, which are separated by a fixed distance T . This distance is typically
called the throw. It is known that the values of the magnification M and the throw
T are sufficient for specifying the position of the lens, as well as its optical power
[258,259]. The lens should be located at a distance z from the input plane, such that

z !
T

M − 1
: (106)

Figure 40

Schematics of an admittedly simplistic version of a single-lens zoom system. In (a),
two geometrical optics rays depict the method for identifying the focal length from the
values of throw T and magnification M . In (b), we illustrate the use of the varifocal
lens as a zoom element. In this latter sketch, the input plane is produced by an initial
lens, and the output plane is the object plane of a final lens.
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Now, for mapping the input plane into the output plane, at a fixed value of T , the
optical power is

K ! − "1 −M#2

TM
: (107)

Hence, as depicted in Fig. 40(a), an admittedly simplistic version of a zoom system
consists of a single varifocal lens that moves along the optical axis. This simplistic
design disrupts the classical notion that a zoom system requires more than one optical
element. In this context, we note that, according to Clark [260], a zoom system similar
to the one depicted in Fig. 40(b) was patent by Allen [261]; who used as a zoom
element a lens with fixed focal length.

From Fig. 40(b) it is apparent that, for Allen’s zoom system, the fixed conjugate planes
are now the exit plane of the first lens and the entrance plane of the third lens. If the
zoom element has a fixed focal length, then one recognizes that there are only two
sharp images for a fixed throw. These sharp images have magnification M and 1∕M .
Nowadays, one may use Allen’s device if the third lens incorporates a mask that
extends the depth of field in a manner similar to the proposal in Ref. 262.

Here we suggest using a varifocal lens as the zoom element. In this latter case, for a
fixed throw, one can select the desired magnification by properly locating the varifocal
lens along the optical axis. At each new axial position, the zoom element must change
its optical power, as in Eq. (107).

In what follows, we discuss the Gaussian optics of tunable telephoto objectives, which
employ varifocal lenses for achieving tunable magnifications with zero Petzval sum.
The optical devices to be discussed are depicted in Fig. 41. We show that some mem-
bers of this family set of optical devices can also have short back focal lengths and
rather low telephoto ratios [263–265]. Next, we focus our attention to the optical sys-
tem in Fig. 41(a). By employing a positive lens (say with optical power K1) and a
negative lens (with optical power K2 ! −K1), one can obtain a telephoto objective
that has zero Petzval sum.

Figure 41

Optical devices that employ varifocal lenses for achieving tunable magnification with
zero Petzval sum. In (a), we depict a two-element telephoto objective. In (b), we show
a telecentric device with governable angular magnification. In (c), we display a design
that has low telephoto ratios, while working with fixed values of the distances d andD.
In (d), we show a variation of the latter device, but now the system has zero Petzval
sum.
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The composing optical elements are varifocal lenses, which are separated by a fixed
distance d, as is depicted schematically in Fig. 42. It is convenient to express the
optical power of the composing varifocal lenses as

K1 !
Ma − 1

d
; K2 ! −K1: (108)

In Eq. (108), Ma denotes the angular magnification of the telephoto objective.
Trivially, the equivalent optical power is

K !
1

f 0
! K2

1d !
"Ma − 1#2

d
: (109)

By paraxial ray tracing, one can obtain that the back focal length of the system is

f back !
2 −Ma

"Ma − 1#2
d: (110)

It is apparent from Eq. (110) and Fig. 43 that, inside the range 1.3 < Ma < 1.45, the
back focal length can have small values. Furthermore, if we employ Cox’ definition of
telephoto ratio [266],R, as well as the results in Eqs. (109) and (110), then we obtain

Figure 42

Outline on the use of two varifocal lenses for implementing a tunable telephoto ob-
jective. In (a), we show that the lenses have a fixed interlens separation d. In (b), we
display the cardinal planes of the optical system. In (c), we indicate that the separation
between the principal planes is always d. However, by using varifocal lenses, one is
able to displace axially the principal planes. Thus, the varifocal lenses surrogate any
physical displacement of the constituting elements.
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R !
f back
f 0

! 2 −Ma: (111)

Thus, for realizing low telephoto ratios, one needs to increase the value of Ma. As
depicted at the right-hand side of in Fig. 43, we note that it is feasible to achieve
telephoto ratios with values inside the range 0.55 ≤ R ≤ 0.7. Next, we discuss the
Gaussian optics design of an afocal system, which is useful for obtaining another type
of tunable telephoto objective that also has zero Petzval sum. To our end, we show the
schematics of the telescopic system in Fig. 44(a). We note that now the constituting
elements are separated by fixed distance d such that

Figure 43

Gaussian optics characteristics of the telephoto objective in Fig. 42 and Eqs. (109) and
(110). For d ! 0.1 "m# and inside the interval 1.3 ≤ Ma ≤ 1.47, we plot the values of
the equivalent focal length, f 0, the back focal length, and the telephoto ratio.

Figure 44

Schematics of two optical systems that employ varifocal lenses for implementing
(a) an afocal device with tunable angular magnification and (b) a telephoto objective
with tunable telephoto ratio and zero Petzval sum.
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"
1
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: (112)

Next, we recognize that the first optical system transforms an incoming parallel beam
into another parallel beam, with a compression ratio equal to M , where

M !
y2
y1

!
K1

K2

: (113)

Of course, the angular magnification of the afocal device is equal to 1∕M . From
Eqs. (112) and (113) we obtain the optical powers that are needed when one changes
the magnification M , for a fixed value of d,

K1 !
1 −M

d
; K2 ! − 1 −M

Md
: (114)

Hence, even when the separation between the two varifocal lenses is constant, the
afocal system can change continuously its angular magnification. Next, we address
our attention to the optical system in Fig. 44(b). In what follows we show that the
previously discussed afocal device can be transformed into a telephoto objective with
the following features: the magnification is tunable, the optical device has zero Petzval
sum, and one can obtain rather low telephoto ratios. From Fig. 44(b) and Eq. (114) we
note that the telephoto objective can have zero Petzval sum if the optical power of the
third element is

K3 !
#1 −M$2

Md
!

#1 −M$
M

K1: (115)

Trivially, the back focal length of the optical system is 1∕K3. The equivalent optical
power of the system is

K ! MK3 !
#1 −M$2

d
: (116)

As before, we use the Cox definition of telephoto ratio and the results in Eqs. (115)
and (116) to obtain

R !
f back
f 0

!
K
K3

! M : (117)

It is apparent from Eq. (117) that one can achieve very low values of telephoto
ratios if M ≪ 1. Finally, by paraxial ray tracing, we recognize that the field of
view (N 0 ū0) is limited by the maximum height, ȳ3, of the third optical element;
that is,

N 0u0 ! Ky3 !
#1 −M$2

d
y3: (118)

In the same context, we notice that the separation between the second component and
the third component can have reasonable values. For illustrating this point, we evalu-
ate the values of K1 d, K2 d, K3 d, and K d, as well as the ratio

δH 0

d
!

1

1 −M
: (119)
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Our results are plotted in Fig. 45 in the range 0.4 < M < 0.7. From Fig. 45 it follows
that the equivalent optical power changes linearly, in proportion to the variations of
K1. We observe that if the desired magnification is in the range 0.4 ≤ M ≤ 0.5, then
the back focal length has values in the interval 50 (mm)–200 (mm). Since the equiv-
alent focal length has values in the interval 150 (mm)–400 (mm), then one can achieve
telephoto ratios that are less than or equal to 0.5.

The characteristics of the above proposed optical devices are conveniently summa-
rized in Table 3. It relevant to note that it may appear cumbersome to have an optical
system that simultaneously changes its optical power and its location along the optical
axis. However, in addition to adaptive optics [267–275], some optical designers have
already directed their attention to the incorporation of new types of varifocal lenses
into nonconventional optical systems [276–280]. Hence, one can foresee that other
types of governable optical elements, such as tunable axicons and controllable phase
rendering techniques, will be considered in future imaging devices [281–283].
Before ending the current paper, it is relevant to recognize that few contributions have
considered the impact of noise levels when extending the depth of field. The presence
of noise reduces the effectiveness of applying simple inverse filtering techniques that
are part of the methods for extending the depth of field.

Table 3. Simple Optical Systems That Employ Varifocal Lenses for Implementing
Devices with Tunable Magnificationa

Constraint Optical Power Axial Displacement P = Petzval Sum

Single-lens zoom system T K ! −"1 −M#2∕MT δz ≠ 0 P ≠ 0
Two-lens afocal system d K ! 0 δz ≠ 0 P ≠ 0

Two-lens telephoto objective d K ! "1 −M#2∕d δz ≠ 0 P ! 0
Three-lens telephoto objective d and D K ! "1 −M#2∕d δz ! 0 P ≠ 0
Three-lens telephoto objective d and D K ! "1 −M#2∕d δz ≠ 0 P ! 0

aAlong the first column, we list the number of optical elements. Along the second column, we list the
physical constraints. Along the third column, we list the equivalent optical power. Along the fourth and
the fifth columns, we indicate if the system requires an axial displacement and if the Petzval sum is equal
to zero, respectively.

Figure 45

Gaussian optics characteristics of the device in Fig. 43(b) for d ! 0.1 "m#, in the
interval 0.4 ≤ M ≤ 0.6. At the left-hand side, we plot the values of K1, K2, K3,
and K . At the right-hand side, we plot f back ! 1∕K3, f 0 ! 1∕K, and δH 0.
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6. CONCLUSIONS

Summarizing, based on scalar diffraction, we have discussed a simple comprehensive
treatment of the methods for increasing focal depth, as well as for controlling the
influence of focus error on the MTF, for an optical system working at full pupil aper-
ture. Our discussion includes a review of the methods for designing tunable amplitude
masks and tunable phase masks that extend the depth of field, and of the use of var-
ifocal lenses for designing nonconventional optical devices.

Aiming for a simple heuristic narrative, we have included a large set of schematic
diagrams that help to visualize the influence of certain masks, and nonconventional
optical windows, on the OTF. Figure captions are closely related to the descriptions
within the text, while avoiding replication. Our schematic diagrams depict the basic
characteristics of linear optical systems, phase-space representations, and the use of
geometrical optics rays. We have refrained ourselves from presenting only sets of
fancy digitally processed images.

In the first part of our discussion, we have shown the usefulness of performing an
angular averaging operation on a 2D mask, if you will, for obtaining the zero-order
circular harmonic. This operation is convenient for describing as a 1D Fourier trans-
formation the axial behavior of an optical system. This remarkably simple result was
here applied for discussing the use of masks that reduce the sidelobes of the axial
impulse response. At the same time, these masks spread the main lobe of the axial
impulse response. In this manner, one can reduce the tolerance of focus error asso-
ciated to the Strehl ratio, or, equivalently, one can increase focal depth.

In the second part of our discussion, we have related the use of masks for controlling
the impact of focus error on the MTF, with the use of the ambiguity function as is
employed in radar engineering. We have used a Taylor series expansion of the ambi-
guity function for identifying symmetric conditions on the generalized pupil function,
which lead to MTFs with low sensitivity to focus errors. This symmetry condition is
extremely useful for initiating the search for suitable masks that reduce the impact of
focus error on the MTF.

In the third part of our discussion, we have noted that, for evaluating the ambiguity
function, the integrand in the Fourier transform resembles the physical arrangement of
the Lohmann–Alvarez phase pair. This undeniably naïve, yet very useful, approach
was applied for proposing adjustable phase masks or, if you will, tunable phase
masks, which are able to govern the depth of field without changing the size of
the pupil aperture.

Furthermore, we have noted that phase masks able to reduce the influence of focus
error also generate spurious oscillation in the MTF. Hence, we have argued in favor of
using amplitude masks with moderate absorption. We have shown that amplitude
masks can reduce the unwanted oscillations on the MTF. In the same context, we
have shown that two suitable amplitude masks, working as a pair, are able generate
a Gaussian attenuation filter, with tunable half-width.

Next, we have pointed out that the out-of-focus OTF is never equal to the in-focus
OTF. In other words, strictly speaking, there is no OTF invariance. However, pro-
vided that one employs a suitable pupil mask, the square value of the difference
between the out-of-focus OTF and the in-focus OTF can have rather small values
within a certain range of values of the focus error coefficient W 2;0.

This later result has practical consequences when stipulating tolerances between the
square value of the difference between the out-of-focus OTF and the in-focus OTF for
a given range of values of W 2;0. For example, inside the range 0 ≤ W 2;0 ≤ 3λ, the
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square modulus of the difference between the out-of-focus OTF and the in-focus OTF
has negligible values, if one uses a hyper-Gaussian absorption mask with screens
having fractional order phase profiles.

In the fourth part of our discussion, we have considered vortex pupil masks, which
have an overall complex amplitude transmittance different from zero, but its angular
average (or, if you will, its zero-order circular harmonic) is equal to zero. Thus, we
have indicated that vortex pupil masks are able to sustain an axial irradiance
distribution that is equal to zero.

Next, we have noted that one can arrive to the concept of vortex pairs by exploiting
Lohmann’s proposal for generating tunable zone plates. We have shown that vortex
pairs are useful for implementing a large family of tunable focalizers. As a particular
example, we have indicated that vortex pairs are particularly useful, but are not lim-
ited, for implementing varifocal lenses.We have indicated that, for the elements form-
ing a vortex pairs, their phases are linear functions of the azimuthal angle. In this
context, we have discussed the use of other types of phase-only masks that have pro-
files expressible in terms of trigonometric functions.

In the fifth part of our discussion, we have described the use of varifocal lenses for
designing a nonconventional zoom system. We have discussed the Gaussian optics
characteristic of a telecentric device with tunable magnification, as well as that of
two telephoto objectives with variable magnification and very low telephoto ratios.
We have indicated that, for the two telephoto objectives, one can have optical systems
with zero Petzval sum. Even though it may appear cumbersome to have an optical
system that simultaneously changes its optical power and its location along the op-
tical axis, we have indicated that some optical designers have already directed their
attention to the incorporation of new types of varifocal lenses for proposing noncon-
ventional optical systems.

In addition to adaptive optics, we have noted that there are currently several competing
techniques for implementing varifocal lenses. We have extrapolated this trend by in-
dicating that future optical systems may incorporate nonconventional tunable devices
that will work at full pupil aperture when recording optical images. Once the images
are recorded, and before the images are displayed, future digital processors will work
in real time for presenting meaningful pictures to human observers.

APPENDIX A

The Greek letter μ denotes a variable in the frequency domain. We employ the Greek
letter Ω for denoting the cut-off spatial frequency. We describe the pupil aperture by
the rectangular function rect!μ∕2Ω". We assume that in the frequency domain there is
a set of complex valued functions, Φn!μ", that form a complete, orthonormal set of
functions with weight function W !μ". Then,

Z
∞

−∞
Φm!μ"W !μ"Φ#

n!μ"dμ $ δm;n: (A1)

In Eq. (A1) we employ the standard definition of a scalar product in a Hilbert space.
The symbol δm;n represents Kronecker’s delta. Following Dirac’s original proposal on
bra vectors, we define Ψn!μ" $ W !μ" Φn!μ", where W !μ" is the weight function.
Trivially, ifW !μ" $ 1, thenΨn!μ" $ Φn!μ". These latter functions are the ket vectors.

Next, we assume that if, at the frequency domain, the complex amplitude transmit-
tance is equal to the function Ψn!μ" $ W !μ"Φn!μ", then at the output plane the
diffraction pattern has a complex amplitude distribution equal to
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ψm!x" #
Z

∞

−∞
Ψm!μ" expfi2πxμgdμ: (A2)

It is convenient now to recognize the following result. For representing mathemati-
cally the bandlimited version of a point source, one can employ the closure property of
a Hilbert space:

δ!μ − ν" #
X∞

m#0

Cm!ν"Ψm!μ": (A3)

In Eq. (A3), the coefficient is

Cm!ν" #
Z

∞

−∞
δ!μ − ν"Φ$

m!μ"dμ # Φ$
m!ν": (A4)

Hence, one has that

δ!μ − ν" #
X∞

m#0

Φ$
m!ν"Ψm!μ": (A5)

In what follows, we note that, by taking the Fourier transform of Eq. (A5), one obtains
an expression that describes the bandlimited version of a tilted, plane wavefront:

expfi2πνxg #
X∞

m#0

Φ$
m!ν"ψm!x": (A6)

By setting ν # 0, we obtain that

1 #
X∞

m#0

Φ$
m!0"ψm!x": (A7)

In the main text we employ Eq. (A7) for stating the condition for achieving an
arbitrarily extended depth of focus; that is,

S!ζ" #
XM

m#0

Φ$
m!0"Ψm!ζ"rect!ζ": (A8)

Then, by increasing the number of terms,M , one expects to achieve an extended depth
of focus; that is,

IS!W " #

!!!
PN

n#0Φ$
n!0"ψn!W "

!!!
2

!!!
PN

n#0Φ$
n!0"ψn!0"

!!!
2
≈ 1: (A9)

We include this appendix for the sake of completeness of the present paper.

APPENDIX B

Here we note that, by substituting Eq. (82) into Eq. (83), one obtains that

H!μ; σ;W 2;0" #
Z

∞

−∞
exp

"
i2π

#
4a sin

$
πσ
4Ω

%
sin

$
πμ
4Ω

%&
cos

$
πν
2Ω

%'

× exp

"
i2π

$
2W 2;0μ
λΩ2

%
ν

'
⋄!μ; ν;Ω"dν: (B1)
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Next, we recognize that by using the Jacobi–Anger expansion, one can rewrite
Eq. (B1) as

H!μ; σ;W 2;0" #
X∞

m#−∞
!−i"mJm

!
8πa sin

"
πσ
4Ω

#
sin

"
πμ
4Ω

#$

×
Z

∞

−∞
exp

%
i2π

"
2W 2;0μ
λΩ2

− m
4Ω

#
ν
&

⋄!μ; ν;Ω"dν: (B2)

If one performs the integral operation in Eq. (B2), one obtains

H!μ; σ;W 2;0" #
"
1−

''''
μ
2Ω

''''

# X∞

m#−∞
!−i"mJm

!
8πa sin

"
πσ
4Ω

#
sin

"
πμ
4Ω

#$

× sinc

%"
1−

''''
μ
2Ω

''''

#!
8

"
W 2;0

λ

#"
μ
2Ω

#
− m

2

$&
rect

"
μ
4Ω

#
: (B3)

Equation (B3) is to be recognized as Eq. (84) in the main text. Trivially, if in Eq. (B3)
we set μ # 0, then H!0; σ;W 2;0" # 1, and by setting μ # 2Ω, one has then
H!2Ω; σ;W 2;0" # 0. Furthermore, if σ # 0, then Eq. (B3) reduces to the out-of-focus
OTF associated to clear pupil aperture:

H!μ; σ;W 2;0" #
"
1−

''''
μ
2Ω

''''

#
sinc

%"
1−

''''
μ
2Ω

''''

#!
8

"
W 2;0

λ

#"
μ
2Ω

#$&
rect

"
μ
4Ω

#
:

(B4)

Finally, for the proposed phase conjugated pair, we note that Eq. (B3) contains the
in-focus OTF, W 2;0 # 0, which is equal to

H!μ; σ; 0" #
"
1−

''''
μ
2Ω

''''

# X∞

m#−∞
!−i"mJm

!
8πa sin

"
πσ
4Ω

#
sin

"
πμ
4Ω

#$

× sinc

%"
1−

''''
μ
2Ω

''''

#
m
2

&
rect

"
μ
4Ω

#
: (B5)

The result in Eq. (B5) is expressed as Eq. (85) in the main text.
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