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Dispersion of short pulses: Guigay matrix
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Abst ract—By employing Guigay coefficients, one can describe in an
elegant and useful manner the Fresnel diffraction patterns of a periodic
structure. Here, we relate Guigay formulation with the classical Fourier
series treatment of first order dispersion. Then, we propose the use of a
remarkably simple matrix for describing first order dispersion.

Fresnel diffraction patterns of periodic structures find
usefully applications when setting Talbot interferometers
[1, 2], for implementing array illuminators [3, 4], for
designing theta decoders [5, 6], for measuring the degree
of spatial coherence [7, 8], and for evaluating Fresnel
similarity [9].

By taking advantage of the analogy between Fresnel
diffraction and first order dispersion [10], one can
describe temporal intensities [11] and temporal
similarities [12], at fractional distances of the Talbot
length.

Several years ago, Guigay identified certain
propagation coefficients (here denoted as Guigay
coefficients) for describing in an elegant manner the
Fresnel diffraction patterns of a grating [13].

Table 1. Our present scope.

Space Well-known Reference 16

Time Well-known This paper

As indicated in Table 1, here our aim is twofold. First,
we relate Guigay formulation with the classical Fourier
series treatment of Fresnel diffraction. Second, since to
our knowledge there is not a matrix description of first
order dispersion, then we suggest using a remarkably
simple matrix treatment of this physical phenomenon.

* E-mail: jojedacas@ugto.mx
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As is depicted in Fig. 1, at 7= 0, we assume that a plane
wavefront illuminates a grating, with period d, whose
complex amplitude transmittance is

0

axn=>

Mm=—o0

, m
27X~ |. ()
c, exp(/ ﬂXd]

From Eq.(1), it is straightforward to obtain the complex
amplitude distribution of the Fresnel diffraction patterns at
a fractional Talbot distance, z= (2 */A) / N=Zy/ N,

2d2 )

u(xz="—)= >

m=—ow

C, exp [—/27; n/‘ij exp ( /271XZ,7). )

Fig. 1. Fractional Talbot effect.

In Ref. [13], Guigay has proved that the complex
amplitude distribution in equation 2 can also be written as

20, _§° on 3)
u(X’A/V)_Z; D,(N) g(x /Vd)'

The coefficients in Eq. (3) are here denoted as the Guigay
coefficient, which are to be specified in what follows. If
we substitute Eq. (1) into Eq. (3), we obtain

247 ad “ mn
u( x, ) /V) = Z c, {;D”(N)exp(—ﬂﬂ/‘/}} @)

Mm=—o
i m
exp| RxzXx— |.
p( d)
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By simple comparison of Egs. (2) and (4), we conclude
that

exp(—i2z %) = f D,(N) exp(

n=0

m”/’v”j 5)

Equation (5) it is to be recognized as a discrete Fourier
transformation. Hence, the Guigay coefficients can be
obtained by taking the discrete inverse Fourier transform
of Eq. (5) to give

D,(N)=— ZeXp( 127r)exp(/27zlvj (6)

The result in equation 6 agrees well with the treatment of
self-images given by Winthrop and Worthington [14].

The remarkable feature of Guigay contribution is that
the coefficient have the following explicit, analytical
expression

A [ () () JetZy . O

From Eq. (7), we recognize that the coefficients are
periodic, with period N. Furthermore, from the Argand
diagram in Fig. 2, it is apparent that for a given value of 77
(say /1=0) the coefficients can have only 4 different values.

Fig. 2. Argand diagram of the complex number (i)".

The above property is a feature of the Gauss sum [15],
which is easily evaluated by setting /7= 0 in Eq. (7).

In Fig. 3, we use the Argand diagram for plotting the
values of the Gauss sum, which are obtained by evaluating
either equation 6 (Winthrop and Worthington) or Eq. (7)
(Guigay coefficients) if /< 100.

http://www.photonics.pl/PLP
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Fig. 3. Argand diagram of Guigay coefficient Do(/), for &/ < 100.

Let us consider that at the input, Z= 0, of a dispersive
medium the input complex amplitude envelope is
represented by a periodic function. At the distance Z
inside a first-order dispersion medium (with dispersion
coefficient B,), the slowly varying complex amplitude
envelope is described by the mathematical expression

w(r,2)= i C, exp[—/Z;rZ(Qz,é’2 /4m) T + Rx mQr] (®)

M=—0

In Eq. (8) the Greek letter QO = 1/T is the temporal
frequency of the slowly varying complex amplitude
envelope. The Greek letter T denotes the time measured in
the proper reference frame. At the fractional Talbot

distance 2= Z;/ N=[4 / (Q* B,)] / N, Eq. (8) becomes

w(z, 4 )— z c, exp{ IZ;rﬁ+ /27zmQr} ©)
Q ﬁz M=—0 /v

By a simple comparison between Eqs. (2) and (9), and
taking into account the result in Eq. (3), we recognize that
Eq. (9) can also be written as

W~ )= Z D(N)wo(r——) (10)

7’ ﬂz

In other words, at the fractional Talbot distance z=Z;/ N,
the slowly varying complex amplitude envelope can be
expressed as a linear combination of laterally shifted
versions of the initial complex amplitude envelope. This
result is no so well-known. In what follows we propose a
matrix treatment, which is similar to those discussed
elsewhere for describing either Fresnel diffraction [16], or
image formation with noncoherent illumination [17].

© 2015 Photonics Society of Poland
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For the sake of simplicity in our present treatment, we
discuss an illustrative example. However, by mathematical
induction, the generic case follows the same procedure. In
Fig. 4 we show pictorially the result in Eq. (10), for the
case /=5,

a) INPUT b) ourrUT
w,(7) ¥ D
+
. x D(5)
wo(r) velr =500 *
N X D,(5) Z.
2 F=p(r,=0)
I:|:|] I:> e Sn) ’ |
I x D5
BRI X
Yo 5Q
x D,(5)
w(r = i)

50

Fig. 4. Pictorial representation of Eq. (10) for // = 5.

The input complex amplitude envelope is represented by a
rectangular window, which fills only one fifth of the
period T/N=1/(5Q). Since the initial pulse is fills only 1/5
of the total width, we can relate the temporal delays with
the row vectors [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, O, 1, 0, O],
[0, 0, 0, 1, O], and [0, O, O, O, 1]; which form an
orthonormal base.
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Equation (11) defines the Guigay matrix, which contains
as matrix elements the Guigay coefficients. Due to the
cyclic structure of the matrix, one can extend the result in
Eq. (11), to other values of M. Of course, we can express
Eq. (11) as an operator, which is denoted as the evolution
operator

V(e 20 = DO i ), (12)

It is straightforward, yet outside our present scope, to
show that

D”(A/){D’(N)]‘; D(Ny=D'(Ny, D' (Ny=D (W) (13)

See Ref. [16, 17]. In Eq. (13) the super index fdenotes the

http://www.photonics.pl/PLP

transposing operation. Since the whole process is
reversible, one can use the operator in Eq. (12) for
identifying phase modulations, which are identical to the
output complex amplitude envelope. Then, by inverse
evolution (Eq. (13)) these phase modulations can be used
to generate short pulses filling only 1// of the total
period.

In conclusions, we have related Guigay formulation with
the classical Fourier series treatment. Then, we have
applied Guigay coefficients for obtaining a remarkably
simple matrix treatment of first order dispersion; which is
of course related to the matrix treatment of Fresnel
diffraction. The matrix describes the evolution operator of
first order dispersion.
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