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Abstract By employing Guigay coefficients, one can describe in an 
elegant and useful manner the Fresnel diffraction patterns of a periodic 
structure. Here, we relate Guigay formulation with the classical Fourier 
series treatment of first order dispersion. Then, we propose the use of a 
remarkably simple matrix for describing first order dispersion.  
 
 
 Fresnel diffraction patterns of periodic structures find 
usefully applications when setting Talbot interferometers 
[1, 2], for implementing array illuminators [3, 4], for 
designing theta decoders [5, 6], for measuring the degree 
of spatial coherence [7, 8], and for evaluating Fresnel 
similarity [9]. 
 By taking advantage of the analogy between Fresnel 
diffraction and first order dispersion [10], one can 
describe temporal intensities [11] and temporal 
similarities [12], at fractional distances of the Talbot 
length. 
 Several years ago, Guigay identified certain 
propagation coefficients (here denoted as Guigay 
coefficients) for describing in an elegant manner the 
Fresnel diffraction patterns of a grating [13]. 

Table 1. Our present scope.  

 

 
As indicated in Table 1, here our aim is twofold. First, 

we relate Guigay formulation with the classical Fourier 
series treatment of Fresnel diffraction. Second, since to 
our knowledge there is not a matrix description of first 
order dispersion, then we suggest using a remarkably 
simple matrix treatment of this physical phenomenon.  
 

* E-mail: jojedacas@ugto.mx 

As is depicted in Fig. 1, at z = 0, we assume that a plane 
wavefront illuminates a grating, with period d, whose 
complex amplitude transmittance is 

 

 ( ) exp 2 .m
m

mg x c i x
d

 (1) 

 
From Eq.(1), it is straightforward to obtain the complex 
amplitude distribution of the Fresnel diffraction patterns at 
a fractional Talbot distance, z = (2 d2 ) / N = ZT / N, 
 

 2 22u( , ) exp 2 exp 2 .m
m

d m mx z c i i x
N N d

 (2) 

 

 
 

Fig. 1. Fractional Talbot effect.  

In Ref. [13], Guigay has proved that the complex 
amplitude distribution in equation 2 can also be written as 
 

2 1

0

2u( , ) (N) ( d).
N

n
n

d nx D g x
N N

    (3) 

 
The coefficients in Eq. (3) are here denoted as the Guigay 
coefficient, which are to be specified in what follows. If 
we substitute Eq. (1) into Eq. (3), we obtain  
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0
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Dispersion of short pulses: Guigay matrix  
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By simple comparison of Eqs. (2) and (4), we conclude 
that  
 

2 1

0

exp( i2 ) D (N)exp 2 .
N

n
n

m m ni
N N

 (5) 

 
Equation (5) it is to be recognized as a discrete Fourier 
transformation. Hence, the Guigay coefficients can be 
obtained by taking the discrete inverse Fourier transform 
of Eq. (5) to give  
 

21

0

1D (N) exp( i2 )exp 2 .
N

n
n

m m ni
N N N

 (6) 

 
The result in equation 6 agrees well with the treatment of 
self-images given by Winthrop and Worthington [14].  
 
 The remarkable feature of Guigay contribution is that 
the coefficient have the following explicit, analytical 
expression  
 

2exp( )
4D (N) 1 1 exp( ) .

22
n N

n

i ni i
NN

 (7) 

 
From Eq. (7), we recognize that the coefficients are 

periodic, with period N. Furthermore, from the Argand 
diagram in Fig. 2, it is apparent that for a given value of n 
(say n=0) the coefficients can have only 4 different values. 

 

 
 

Fig. 2. Argand diagram of the complex number (i)N. 

The above property is a feature of the Gauss sum [15], 
which is easily evaluated by setting n = 0 in Eq. (7). 

 
In Fig. 3, we use the Argand diagram for plotting the 

values of the Gauss sum, which are obtained by evaluating 
either equation 6 (Winthrop and Worthington) or Eq. (7) 
(Guigay coefficients) if N   
 

 

Fig. 3. Argand diagram of Guigay coefficient D0(N), for N 100. 

 Let us consider that at the input, z = 0, of a dispersive 
medium the input complex amplitude envelope is 
represented by a periodic function. At the distance z, 
inside a first-order dispersion medium (with dispersion 
coefficient 2), the slowly varying complex amplitude 
envelope is described by the mathematical expression 

 2 2
2( , ) exp 2 ( / 4 ) 2 .m

m

z C i z m i m  (8) 

 
In Eq. (8) 
frequency of the slowly varying complex amplitude 
envelope. T the time measured in 
the proper reference frame. At the fractional Talbot 
distance z = ZT / N / ( 2 2)] / N, Eq. (8) becomes 
 

2

2
2

4( , ) exp 2 2 .m
m

mC i i m
N N

 (9) 

 
By a simple comparison between Eqs. (2) and (9), and 
taking into account the result in Eq. (3), we recognize that 
Eq. (9) can also be written as 
 

1

02
02

1( , ) (N) ( ).
N

n
n

nD
N N

  (10) 

 
In other words, at the fractional Talbot distance z = ZT / N, 
the slowly varying complex amplitude envelope can be 
expressed as a linear combination of laterally shifted 
versions of the initial complex amplitude envelope. This 
result is no so well-known. In what follows we propose a 
matrix treatment, which is similar to those discussed 
elsewhere for describing either Fresnel diffraction [16], or 
image formation with noncoherent illumination [17].  
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For the sake of simplicity in our present treatment, we 
discuss an illustrative example. However, by mathematical 
induction, the generic case follows the same procedure. In 
Fig. 4 we show pictorially the result in Eq. (10), for the 
case N=5.  

 
 

Fig. 4. Pictorial representation of Eq. (10) for N !"#$"
 
The input complex amplitude envelope is represented by a 
rectangular window, which fills only one fifth of the 
period T/N=1/(5 ). Since the initial pulse is fills only 1/5 
of the total width, we can relate the temporal delays with 
the row vectors [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], 
[0, 0, 0, 1, 0], and [0, 0, 0, 0, 1]; which form an 
orthonormal base. 
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3 2 1 0 4
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(5) (5) (5) (5) (5)
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, (5) (5) (5) (5) (5)
5

(5) (5) (5) (5) (5)
(5) (5) (5) (5) (5)

T

D D D D D
D D D D D

Z D D D D D
D D D D D
D D D D D

 (11) 

 
Equation (11) defines the Guigay matrix, which contains 
as matrix elements the Guigay coefficients. Due to the 
cyclic structure of the matrix, one can extend the result in 
Eq. (11), to other values of  N. Of course, we can express 
Eq. (11) as an operator, which is denoted as the evolution 
operator   

0( , ) ( ) ( ).TZ D N
N

      (12) 

It is straightforward, yet outside our present scope, to 
show that 

1 1 **( ) ( ) ; ( ) ( ); ( ) ( ).
t t

D N D N D N D N D N D N  (13) 

 
See Ref. [16, 17]. In Eq. (13) the super index t denotes the 

transposing operation. Since the whole process is 
reversible, one can use the operator in Eq. (12) for 
identifying phase modulations, which are identical to the 
output complex amplitude envelope. Then, by inverse 
evolution (Eq. (13)) these phase modulations can be used 
to generate short pulses filling only 1/N of the total 
period.  

 

In conclusions, we have related Guigay formulation with 
the classical Fourier series treatment. Then, we have 
applied Guigay coefficients for obtaining a remarkably 
simple matrix treatment of first order dispersion; which is 
of course related to the matrix treatment of Fresnel 
diffraction. The matrix describes the evolution operator of 
first order dispersion.  
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