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Abstract

We discuss the use of nonconventional optical processors for generating irradiance distributions, 
which are useful for visualizing the characteristics of imaging devices that extend the depth of field. 
Our discussion starts with the use of binary masks for generating nonconventional irradiance 
distributions, which display the variations of the impulse response with focus errors. By using an 
anamorphic optical processor these irradiance distributions can easily be transformed into 
variations of the optical transfer function vs focus errors. Next, another anamorphic optical 
processor is used for generating the ambiguity function of a pupil aperture, which helps to visualize 
the variations of the optical transfer function with variable focus error. Finally, we translate the 
integral transform associated with the evaluation of the ambiguity function into tunable devices for 
controlling the depth of field, without modifying the size of the pupil aperture.
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Chapter 8
Optical Processors as Conceptual Tools
for Designing Nonconventional Devices

Jorge Ojeda-Castañeda, Sergio Ledesma, Emmanuel Yépez-Vidal,
Cristina M. Gómez-Sarabia and Miguel Torres-Cisneros

Abstract We discuss the use of nonconventional optical processors for generating
irradiance distributions, which are useful for visualizing the characteristics of imag-
ing devices that extend the depth of field. Our discussion starts with the use of binary
masks for generating nonconventional irradiance distributions, which display the
variations of the impulse response with focus errors. By using an anamorphic opti-
cal processor these irradiance distributions can easily be transformed into variations
of the optical transfer function vs focus errors. Next, another anamorphic optical
processor is used for generating the ambiguity function of a pupil aperture, which
helps to visualize the variations of the optical transfer function with variable focus
error. Finally, we translate the integral transform associated with the evaluation of
the ambiguity function into tunable devices for controlling the depth of field, without
modifying the size of the pupil aperture.

8.1 Introduction

In image science, the word apodization is used for describing a large set of techniques
for shaping the Point Spread Function (PSF) of an optical system. However, the word
apodization [1–6] was coined in optical spectroscopy for describing the use of tapered
1-D pupil masks that reduce diffraction bands, or optical side lobes, on the PSF. It
was recognized that this type of tapering masks also expand the width of the PSF,
while reducing the presence of the side lobes. These two previous features are useful
for extending the axial PSF of a 2-D, radially symmetric optical systems [7–9]. For
this type of applications, it is convenient to recognize that the normalized version of
the axial PSF expresses the Strehl ratio vs focus error [10].
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Of course, one can extend the depth of field of an imaging device, simply by
closing down the pupil aperture or by using annular pupil apertures. However, these
solutions reduce the resolution as well as the light gathering power of the optical
system. Hence, there is an optical engineering endeavor that aims to reduce the
influence of focus errors on the optical transfer function (OTF), without substantially
reducing either the resolution or the light gathering power of an optical system
[11–14].

In Sect. 8.2, we discuss the use of binary masks that have unit transmittance only
along a very narrow slit, which follows suitable paths for generating optical path
differences [15–18].

In Sect. 8.3, we show that a display of the ambiguity function [19–23] is rather
useful diagram for visualizing the impact of focus error on the OTF. The ambiguity
function of the pupil aperture exhibits (in a single picture) the influence of focus error
on the OTF. Furthermore, the ambiguity function helps to expand the defocused OTF
as a Taylor series expansion in terms of the focus error coefficient. Half of the terms
of the Taylor series can be reduced to zero if the complex amplitude transmittance
of the pupil aperture is a hermitian function. Hence, one needs to explore the use of
masks whose amplitude variations are described by even functions, while the phase
variations are described by odd functions [24].

By using a suitable mask one can obtain an OTF that does not have zero values
inside the passband, and the OTF varies slowly with focus errors. Thus, one can
preserve the spatial frequency content of several planar images, which are located
at different depths. These images are recorded with virtually the same amount of
contrast reduction. Consequently, one can use the same digital filter for restoring the
contrast of all recorded images [25].

The present technology allows producing nonconventional masks, with complex
amplitude transmittance. Furthermore, there several fast digital algorithms for im-
proving the quality of an image. Hence, nowadays one can use both nonconventional
devices with complex amplitude transmittance, as well as fast digital algorithms for
extending the depth of field [26–31].

In Sect. 8.4, we show that the schematics of an optical processor are useful for
gaining physical insights, on the design of tunable devices for controlling the depth of
field. To this end, we translate the integral transform associated with the evaluation
of the ambiguity function into tunable devices for controlling the depth of field,
without modifying the pupil aperture. These types of devices are here denoted as
Alvarez-Lohmann lenses. In Sect. 8.5, we summarize our contribution.

8.2 Visualizing a PSF with High Depth of Focus

We start by writing Helmholtz differential equation that describes the propagation
of a 2-D scalar wave ϕ(x, z). That is,

[∂2
x + ∂2

z + k2]ϕ(x, z) = 0. (8.1)
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In Eq. (8.1) the wave number is denoted as k = 2π/λ. It is easy to verify that its
formal solution is

ϕ(x, z) = exp

[
ikz
√
k−2∂2

x + 1

]
ϕ(x, 0). (8.2)

The exponential operator in Eq. (8.2) is to be used as a power series expansion of the
differential operator ∂2

x . See for example references from 32 to 34. One can relate the
formal solution in Eq. (8.2) to the angular spectrum of planes waves, by assuming
that the initial condition ϕ(x, z = 0) can be expressed as the inverse Fourier transform
of the plane wave spectrum �(μ). That is,

ϕ(x, 0) =
∫ ∞

−∞
�(μ)exp(i2πxμ)dμ (8.3)

In Eq. (8.3) we use the Greek letter μ for denoting the spatial frequency along the
horizontal axis, which is of course related to direction cosine along the horizontal
axis α as follows, μ = α/λ. If one applies the exponential operator in Eq. (8.2) to
the inverse Fourier transform in Eq. (8.3) one obtains

exp

[
ikz
√
k−2∂2

x + 1

]
ϕ(x, 0)

=
∫ ∞

−∞
�(μ)exp[ikz

√
1 − λ2μ2]exp(i2πxμ) dμ. (8.4)

As one should expect. The result in Eq. (8.4) can be usefully rewritten in the following
manner. As is depicted in Fig. 8.1, let us assume that that in a classical optical
processor the input is a pinhole size source, which is represented by the mathematical
expression

u0(x, z) = δ(x)δ(z). (8.5)

As is depicted in Fig. 8.1, at the Fraunhofer plane with spatial frequency variables
(μ, ζ), we place a mask with complex amplitude transmittance

P(μ, ζ ) = Q(μ)δ(ζ −
√
�2 − μ2). (8.6)

At this stage, we set Q(μ) = rect(μ/2�) where the Greek letter� denotes the cut-off
value of the spatial frequency μ. The second term in Eq. (8.6) describes a very narrow
slit that follows the curve ζ = √

(�2 − μ2). The amplitude impulse response of the
coherent optical processor is

p(x, z) =
∫ ∞

−∞

∫ ∞

−∞
P(μ, ζ )exp[i2π (xμ+ zζ )]dμdζ (8.7a)

Or equivalently, by using Eq. (8.6), one can write Eq. (8.7a) as

p(x, z) =
∫ ∞

−∞
Q(μ)exp[i2π (xμ+ z

√
�2 − μ2)]dμ (8.7b)
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Fig. 8.1 Schematic diagram of an optical processor using a pupil mask in the form of narrow slit

By a simple comparison, between Eqs. (8.4) and (8.7b), it is apparent that the optical
processor is able to display, in a single 2-D picture, the propagation the scalar wave
ϕ(x, z); where � = λ−1.

One can generalize this remarkably simple result by selecting the complex
amplitude distribution, at the Fraunhofer plane, as

Q(μ) = �(μ)rect
( μ

2λ−1

)
. (8.8)

We discuss next other useful examples. In the paraxial regime, the propagation of a
2-D wave scalar wave ϕ(x, z) can be is described using the differential equation

[
∂2
x + i2k∂z

]
φ(x, z) = 0 (8.9)

It is straightforward to show that for this case, as depicted in Fig. 8.2, on needs a
mask with complex amplitude transmittance

P(μ, ζ ) = Q(μ)δ

(
ζ + μ2

2�

)
; (8.10)

where again � = λ−1. In Fig. 8.3 we show the irradiance distributions associated
to the pictures describing the propagation of an initial point source, as predicted by
Helmholtz equation; as well as the picture that portraits wave propagation within the
paraxial approximation. It is interesting to note that the picture describing propaga-
tion in the paraxial regime (left hand side of Fig. 8.3) has a wider diverging angle
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Fig. 8.2 Optical processor used for visualizing the propagation of a 2-D scalar wave, in the paraxial
regime

Fig. 8.3 Irradiance distributions displaying the impulse response at the (x, z) plane

than the picture describing propagation according to Helmholtz equation (right hand
side of Fig. 8.3).

Next, we discuss an interesting variant of our previous results. As depicted
in Fig. 8.4, let us assume that the mask has the following complex amplitude
transmittance
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Fig. 8.4 Optical processor using a pupil mask in the form of narrow slit, which follows a fifth power
curve

P(μ, ζ ) = Q(μ)δ

[
ζ − σ

(μ
�

)5
]
. (8.11)

At the output plane of the coherent optical processor, the complex amplitude
distribution is

p(x, z) =
∫ ∞

−∞
Q(μ)exp

{
i2π

[
xμ+ zσ

(μ
�

)5
]}

dμ . (8.12)

The complex amplitude distribution in Eqs. (8.11) and (8.12) have now the following
interpretation.

At the Fraunhofer plane the curve ζ = (μ/�)5 represents a phase profile to the
fifth power. Hence, now at the output plane, the z-axis denotes the maximum value
of the optical path difference, which is reached at the edge (μ = ±�) of the 1-D
pupil aperture. Again the pupil aperture is described by the function rect(μ/2�).
Consequently, in this later example, the variable ζ is a dimensionless variable. Its
Fourier transform pair is the dimensionless variable

z = (N − 1)
t

λ
(8.13)



8 Optical Processors as Conceptual Tools for Designing Nonconventional Devices 123

Table 8.1 Possible curve for the narrow slit in the Fraunhofer plane. The displays that are described
along the third column are obtained using the optical processor in Fig. 8.1. And the displays along
the third column are obtained using the optical processor in Fig. 8.6.

Describing Binary Mask Display 1 Display 2

Nonparaxial
propagation

P (μ, ζ ) = Q(μ)δ(ζ − √
�2 −μ2) PSF along the

Z-axis
MTF along the
Z-axis

Paraxial
propagation

P (μ, ζ ) = Q(μ)δ
(
ζ + μ2

2�

)
PSF along the
Z-axis

MTF along the
Z-axis

Asymmetric
quadratic
phase mask

P (μ, ζ ) = Q(μ)δ
[
ζ − sgn (μ)

(
μ

�

)2
]

PSF vs OPD MTF vs OPD

Cubic phase
mask

P (μ, ζ ) = Q(μ)δ
[
ζ − (

μ

�

)3
]

PSF vs OPD MTF vs OPD

Fractional
wavefront

P (μ, ζ ) = Q(μ)δ
[
ζ − sgn (μ)

∣∣ μ
�

∣∣3.75
]

PSF vs OPD MTF vs OPD

High order
phase mask

P (μ, ζ ) = Q(μ)δ
[
ζ − (

μ

�

)5
]

PSF vs OPD MTF vs OPD

Hence, as is indicated in Eq. (8.13), the Latin letter z describes the variation of optical
path difference of an optical element. We denote with the letter N the refractive index,
and we assume that the optical element is surrounded by air, an d that it has a physical
thickness t.

A similar interpretation can be applied to other narrow slits that follow other
curves in the Fraunhofer domain, namely

P (μ, ζ ) = Q(μ)δ
[
ζ − σ

∣∣∣
μ

�

∣∣∣
m]
. (8.14)

In Eq. (8.14) the Latin letter m is a real number that the indicates power of the
monomial μ/�. At the output plane of the coherent optical processor, in Fig. 8.3,
the complex amplitude distribution displays the changes of the coherent impulse
response in terms of the position variable x, as well as in terms of the dimensionless
variable z, which represents the variations of optical path difference caused by a
refractive optical element; as is indicated in Eq. (8.13).

In Table 8.1 we summarize other possible options when selecting the curve that
the narrow slit must follow in the Fraunhofer domain. It is to be noted by using this
procedure one can visualize the impact of optical path difference on the behavior of
the impulse response for rather unconventional phase delays; as indicated in Fig. 8.5.
From this latter figure, it is apparent the unique behavior of the phase mask with
fractional power phase profile. Otherwise, we note that the selected phase masks
generate asymmetric irradiance distributions, which spread out as the optical path
difference increases.

In Fig. 8.6, we show the schematics of an anamorphic optical processor. Now, for
the new optical processor, the input is the irradiance distribution that is obtained at
the output plane of the previous optical processor. As is apparent from the schematic
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Fig. 8.5 Impulse response as a function of the position and of the optical path difference of several
nonconventional optical elements

Fig. 8.6 Anamorphic optical processor for displaying (as irradiance variations) the OTF’s of several
optical elements

diagram in Fig. 8.6, the new anamorphic optical processor implements an imaging
operation, with magnification equals to unity, along the vertical axis while it imple-
ments a Fourier transformation along the horizontal axis. That is, at the output plane
of the new optical processor, the complex amplitude distribution is
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Fig. 8.7 Variations of the MTF as a function of the spatial frequency μ (horizontal axis) as well as
a function of the optical path difference (vertical axis) for four different phase profiles

H (μ, z) =
∫ ∞

−∞

∫ ∞

−∞

∣∣p(x, z′)
∣∣2exp(−i2πμx)δ(z − z′)dxdz′

=
∫ ∞

−∞
|p(x, z)|2exp(−i2πμx)dx.

(8.15)

The result in Eq. (8.15) indicates the following. At the output plane of the anamor-
phic optical processor in Fig. 8.6, one can obtain optically a complex amplitude
distribution that is proportional to the Optical Transfer Function (OTF) as a function
of both the spatial frequency μ and the axial distance z.

Of course, when visualizing the OTF one uses a square law detector for obtaining
the square modulus of the OTF. Hence, the irradiance distribution at the output is the
square value of the Modulation Transfer Function (MTF).

In Fig. 8.7 we show the display of the MTF’s that are obtained when using,
respectively, the curve ζ = sgn (μ) (μ/�)2, as well as the curves that are described
along the lines 3, 4 and 5 in Table 8.1. It is apparent from Fig. 8.7 that as the optical
path difference increases, the MTF’s tend to spread out. However, the MTF’s exhibit
spurious oscillations. It is clear from Fig. 8.7 that again the phase mask with phase
profile with fractional power (m = 3.75) has reduced spurious oscillations. In the
following section, while we describe another method for visualizing the impact of
focus error on the MTF, we discuss an optical technique that strongly reduces the
spurious oscillations on the MTF.

Several years ago, some of us established a link between the OTF suffering from
focus errors and the ambiguity function of the pupil aperture [23]. Later on, the
ambiguity function was applied as a mathematical tool for proposing optical masks
that reduce the impact of focus error on the OTF [35].
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Fig. 8.8 Schematics of an optical processor that is used for analyzing out-of-focus imagery

8.3 Visualizing the MTF with Extended Depth of Field

Here, for the sake of completeness of our presentation, we discuss briefly the out-
of-focus image formation process when using a classical optical processor; as is
depicted in Fig. 8.8. For further details please see reference [36]. In what follows
we consider that the square law is located at fixed position, at the output plane,
while the pinhole size source moves along the optical axis of the optical processor.
Consequently, the geometrical image of point source is located before or after the
detector plane. From the viewpoint of wave aberration, within the paraxial regime,
one can represent the location of the point source along the optical axis, by using the
following generalized pupil function

P (μ; W2,0) = Q(μ)exp

{
i2π

(
W2,0

λ

)(μ
�

)2
}
. (8.16)

In Eq. (8.16) we denote as Q(μ) the complex amplitude transmittance of the pupil
mask; and the letter W2,0 denotes the wavefront focus error coefficient. The Greek
letter � denotes the cut-off spatial frequency of the rectangular pupil aperture.

For simplifying the notation it is convenient to employ the dimensionless
parameter

W = W2,0

λ
(8.17)
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Fig. 8.9 Scanning lines along the ambiguity function for obtaining the values of the out-of-focus
MTF

As is well known, the OTF of Eq. (8.16) is

HQ(μ;W ) = Norma

∫ ∞

−∞
P
(
ν + μ

2

)
P ∗
(
ν − μ

2

)
dv

HQ(μ;W ) = Norma

∫ ∞

−∞
Q
(
ν + μ

2

)
Q∗
(
ν − μ

2

)
exp

[
i2π

(
2Wμ

�2

)
ν

]
dν.

(8.18)

In Eq. (8.18) the upper case letter Norma denotes a suitable normalization factor. On
the other hand, the ambiguity function of the pupil mask, Q(μ), is

AQ(μ, y) = Norma

∫ ∞

−∞
Q
(
ν + μ

2

)
Q∗
(
ν − μ

2

)
exp [i2πyν] dν. (8.19)

From a simple comparison between Eqs. (8.18) and (8.19), we note that

y =
(

2W

�2

)
μ. (8.20)

If in the display of the ambiguity function (as that at the left hand-side of Fig. 8.9) one
traces a straight-line, crossing the origin; the slope is proportional to the amount of
focus error; as indicated in Eq. (8.20). If one selects a value of the spatial frequency,
say μ = σ, then the variations of the OTF for variable focus errors can be visualized
by moving up or down along a vertical line; as depicted at the centre of Fig. 8.9.
Furthermore, for a given position along the vertical line, say y = h, the focus error
coefficient is W = (�2/2) (h/σ).

Next, we recognize that for displaying the ambiguity function, one can use the
anamorphic processor in Fig. 8.10. See for example reference [36]. In Fig. 8.10, we
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Fig. 8.10 Anamorphic optical processor that is used for visualizing the Ambiguity function

indicate that the input for the anamorphic processor is the Product Spectrum, which
is

PQ(μ, ν) = Q
(
ν + μ

2

)
Q∗
(
ν − μ

2

)
. (8.21)

For a clear pupil aperture, Q(μ) = rect(μ/2�) then the Product Spectrum is

P (μ, ν) = rect
( μ

4�

)
rect

(
ν

2�− |μ|
)
. (8.22)

We note that the anamorphic processor, in Fig. 8.10, performs an imaging operation,
with unit magnification, along the horizontal axis. From Fig. 8.10 and Eq. (8.22)
the following considerations are apparent. Inside the passband, |μ| ≤ 2�, a vertical
line along the product spectrum is bounded by the function rect [ν/ (2�− |μ|)].

Hence, at the output plane of the optical processor, along the vertical axis one has
the Fraunhofer diffraction pattern of a rectangular window. Thus, at the output plane
of the optical processor, the complex amplitude distribution is

AQ(μ, y) =
(

1 − |μ|
2�

)
sin c

[(
1 − |μ|

2�

)
y

]
(8.23)

In other words, the ambiguity function is composed by a series of sinc functions with
variable half-width. Consequently, the out-of-focus OTF exhibits a large number of
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Fig. 8.11 Use of phase-only masks for obtaining ambiguity functions with “Bow-Tie” effect

zero crossings. If one wants to modify this result, then one needs to consider another
possible ambiguity functions. For example, if at the Product spectrum we have a
vertical line that has a quadratic phase factor,

P (μ, ν) = exp

[
i2πa(

ν

�
)
2
]
rect

[
ν

2�− |μ|
]
rect

[ μ
4�

]
. (8.24)

For obtaining this type of Product Spectrum, one needs a cubic phase mask, as
proposed by Dowski and Cathey. If, as depicted in Fig. 8.11, now we take the
complex amplitude transmittance along a vertical line vertical axis, and we evaluate
the Fourier transform of Eq. (8.24), we obtain

AQ(μ, y) = rect
( μ

4�

)

∫ (2�−|μ|)
2

− (2�−|μ|)
2

exp

{
i2π

[
a
(μ
�

)2 + yv

]}
dν.

(8.25)

It is apparent from Eq. (8.25) that along the y-axis, the ambiguity function results
from the lateral superposition of Fresnel diffraction patterns of rectangular windows,
which have variable width. See Fig. 8.11.

Since any vertical line is a Fresnel diffraction pattern, then the ambiguity function
spreads all over the (μ, y) plane. This behaviour is known as the “bow-tie effect”.
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See reference [37]. As a consequence, the OTF’s have low sensitivity to focus errors.
Of course, one can extrapolate this previous result, by exploring the use of high order
aberration polynomials. That is,

Q(μ) = exp

{
i2πa

(μ
�

)2m+1
}
rect

( μ
2�

)
. (8.26)

One can guess that the phase mask described in Eq. (8.26) will be able to spread the
ambiguity function along the vertical axis; as is depicted in Fig. 8.11. Consequently,
one expects that this type of masks will be able to extend the depth of field. However,
it is relevant to note that these types of high order phase masks (including the cubic
phase mask) introduce spurious oscillations. For reducing this undesirable feature,
one can use a Gaussian apodizer on the pupil aperture; as part of the spatial filter. In
other words, now the complex amplitude transmittance of the pupil aperture is

Q(μ) = exp

{
i2πa

(μ
�

)2m+1 − c
(μ
�

)2
}

rect
( μ

2�

)
. (8.27)

In Eq. (8.27) the lower case letter “c” denotes a damping factor, in the amplitude
variations, which are described by a Gaussian profile. See reference [38].

At the top of Fig. 8.12, we show the MTF of a cubic phase mask for W = 0 and for
W = 3. One can note that there are spurious oscillations. At the bottom of Fig. 8.12,
we show the MTF that is obtained if one use the complex amplitude transmittance
in Eq. (8.27) for m = 1. From the results at the bottom of Fig. 8.12, it is apparent
that a Gaussian apodizer is able to reduce unwanted oscillations in the MTF; without
spoiling the low sensitivity of the MTF to focus errors.

The tapering mask with Gaussian profile has the following additional advantages,
which are illustrated in Fig. 8.13. First, by using a Gaussian apodizer the 2-D rect-
angular pupil aperture is transformed into a nearly circularly symmetric aperture; as
is indicated along the first column of Fig. 8.13.

Furthermore, the Gaussian apodizer reduces the diffraction lobes in the asym-
metric PSF; as depicted along the second column of Fig. 8.13. We note also that the
Gaussian apodizer broadens the MTF, as shown along the third column of Fig. 8.13.
The above results can also be visualized in terms of the product spectrum and the
ambiguity function; as we depict next.

Along the first column in Fig. 8.14, we show the influence that a Gaussian mask
has on the product spectrum. Along the second column, first line, in Fig. 8.14 we
display zero-phase variations inside the support of the product spectrum. Along the
second column, line two, of Fig. 8.14 we show as colour variations the profile of
a 2-D cubic phase mask. And along the second column, line three, in Fig. 8.14 we
show the phase delays of a 2-D cubic phase mask.

From the third column in Fig. 8.14 the following characteristics are apparent.
Along the first line and third column of Fig. 8.14, we have that the modulus of
the ambiguity function has several regions with zero values. Then as depicted in the
second line and third column of Fig. 8.14, if one uses a cubic phase masks the modulus
of the ambiguity function has extended regions with nonzero values. However, the
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Fig. 8.12 Use of a Gaussian mask for reducing the spurious oscillations on the in-focus MTF and
out-of-focus MTF

nonzero values have spurious oscillations. Finally, as shown in the second line and
third column of Fig. 8.14, if one uses a Gaussian mask together with a cubic phase
masks one can reduce the spurious oscillations on the regions with nonzero values.

For obtaining the numerical simulations in Fig. 8.14, which are described by Eq.
(8.27), we select the values a = 33, n = 1 and c = 0.44. These results are generalized
in reference [39], where we use the following definition for hyper Gaussian masks.
In what follows we consider that the complex amplitude transmittance of the pupil
aperture is

Q(μ) = exp
{
i2π sgn (μ)

∣∣∣
μ

�

∣∣∣
m}

exp
{
−c
∣∣∣
μ

�

∣∣∣
n}
rect

( μ
2�

)
(8.28)

In Eq. (8.28) the letters m and n denote real positive numbers. Since the values of m
are no longer integer numbers, then the first term in Eq. (8.28) represents a fractional
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Fig. 8.13 Influence of Gaussian tapering on the pupil aperture, the PSF and the MTF

Fig. 8.14 The impact of a Gaussian apodizer on product spectrum, and the resultant ambiguity
function

order wavefront. Due to the factor sgn(μ), denoting the signum function, the wave-
front has phase delays that are odd functions. Furthermore, regarding the second term
in Eq. (8.28), for values of n such that n< 2 the amplitude transmittance is denoted
as sub Gaussian function; for n = 2, the amplitude transmittance is represented by a
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Gaussian function; while for n> 2, the amplitude transmittance is denoted as super
Gaussian function. We employ the generic word hyper Gaussian for encompassing
the cases under exploration with 0< n< 10.

For our numerical simulations we use the following definitions that apply for the
1-D case. For variable values of focus error, the normalized irradiance distribution
of the impulse response is

|q(x;W )|2 =
∣∣∣∣
∫ ∞

−∞
Q(μ)exp

[
i2π

(
W
(μ
�

)2 + xμ

)]
rect

( μ
2�

)
dμ

∣∣∣∣
2

. (8.29)

And of course, the MTF is

|H (μ;W )| =
∫ ∞

−∞
|q(x;W )|2exp(−i2πμx)dx. (8.30)

We evaluate numerically Eqs. (8.29) and (8.30) using the fast Fourier transform (FFT)
algorithm described in reference [40]. We use 1024 points and a set of Graphic User
Interface (GUI) elements. The numerical process is written in C++ language. Our
numerical search starts by considering the values that were identified in the previous
section. Then, we modify the parameters “a” and “c” in Eq. (8.28) until the variations
of the MTF have a mean square error that is less than 10−4.

Once that the 1-D sub Gaussian masks were identified, Q(μ) in Eq. (8.28), the
complex amplitude transmittance of the 2-D masks are obtained as the product Q(μ)
Q(ν). After extensive numerical evaluations, we identify the following interesting
result.

Inside the range 0 ≤W ≤ 3, one can obtain a MTF that varies slowly with focus
error, by using a fractional wavefront m = 2.75 that has a maximum optical path
difference value a = 27, together with a sub Gaussian mask n = 1.75 and attenuation
factor c = 1.61.

In Fig. 8.15, along the second column, we plot the 1-D profiles. And along the
third column, we show the following 2-D displays. In the first line, we place a pseudo
color picture of the 2-D amplitude transmittance variations. In the second line, we
place an interferogram of the 2-D phase variations. In the third line and the fourth
line, we use pseudo color pictures for displaying the 2-D variations of the PSF and
the MTF, respectively.

Finally, we note that these optical characteristics preserve the resolution associated
with a full aperture. However, these results come at the expense of reducing the light
gathering power by a factor slightly greater than two.

8.4 Tunable Devices for Extending the Depth of Field

According to Plummer, Baker and van Tassel [41], Kitajima was the first person
that proposed to implement suggested variable optical power lenses, by using a
pair of cubic phase masks [42]. Years later, Lohmann [43–45] and Alvarez [46, 47]
re-discovered independently and simultaneously Kitajima’s technique .
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Fig. 8.15 Resultant PSF and resultant MTF associated to the hyper Gaussian apodizer in Eq. (8.28)

In what follows, our aim is threefold. First, we indicate that Kitajima’s technique,
commonly known as Alvarez-Lohmann lenses, is also useful for implementing tun-
able absorption masks, which are useful for setting hyper Gaussian apodizers with
tunable half-width. Second, we show that by using two suitable helical refractive
elements, one can control the optical path difference of radial focalizers. And third,
we discuss the use of a pair of helical distributed amplitude masks for tuning the
damping coefficient of Gaussian-like windows.

For achieving our first goal, we note that Alvarez and Lohmann lenses employ
two phase masks that form a pair. The amplitude transmittance of a single mask is the
complex conjugate of the other mask. Then, by introducing a lateral displacement
between the two masks, say by the spatial frequency σ, one sets a varifocal lens. In
mathematical terms, for the 1-D case, a single element of the pair has the following
complex amplitude transmittance
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Q(ν) = exp

{
i2πa

( ν
�

)3
}
. (8.31)

In Eq. (8.31) the lower case letter “a” denotes the optical path difference in units
of the wavelength λ. Next, it is convenient to use two elements. Each element has
the complex amplitude transmittance in Eq. (8.31). However when setting the pair,
one element is the complex conjugate of the other. Then, one introduces a lateral
displacement between the elements of the pair. In this manner, the overall complex
amplitude transmittance is

PQ(ν; σ ) = Q
(
ν + σ

2

)
Q∗
(
ν − σ

2

)

= exp

{
i
(aπ

2

) ( σ
�

)3 + i2π
(aσ
�

) ( ν
�

)2
}
. (8.32)

In Eq. (8.32) the quadratic variation, in the variable ν, is similar to the amplitude
transmittance of a lens. However, it is important to recognize that by changing σ,
one can tune the power of a lens.

Moreover, we recognize that the physical procedure for obtaining the result in Eq.
(8.32) is similar to the mathematical operation that is involved when evaluating the
OTF in Eq. (8.18). Hence, we claim the following.

By visualizing the amplitude PSF of the pair in Eq. (8.32), one visualizes the
ambiguity function of a single element of the pair, as in Eq. (8.18). That is,

pQ(x; σ ) = Norma

∫ ∞

−∞
PQ(ν, σ )exp [i2πxν] dν = AQ(σ , x). (8.33)

Now, we have a physical method (the use of a pair of phase masks) for understanding
the influence that a single element has on the behavior of the ambiguity function.

Furthermore, one can propose the use of a mask that has phase variations to the
four-power for implementing a cubic phase mask, with controllable optical path
difference.

For this application, we consider that the complex amplitude transmittance of a
single element is

Q(ν) = exp

{
i2πa

[( ν
�

)4 − 1

2

( ν
�

)2
]}

. (8.34)

As before, we employ a phase conjugated pair and we introduce a lateral displacement
between the members of the pair. Then, we generate the following generalized pupil
function

PQ(ν; σ ) = Q
(
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2

)
Q∗
(
ν − σ

2

)

= exp

{
i2π

(
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] ( ν
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)}
. (8.35)
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From Eq. (8.35) one notes that by changing the value of σ, one can change the
optical path difference of a cubic phase mask. In other words, we can implement a
varicubic phase masks. However, the proposed phase mask generates also a linear
phase variation. The influence of this unwanted term can be reduced by properly
selecting the values of the initial optical path difference and the maximum value of
the lateral displacement. See for example [48–50].

For achieving our second goal, in this section, we describe the use of a pair of
amplitude masks that help for setting a Gaussian spatial filter, with adjustable half-
width [50]. We start our discussion, by considering the amplitude transmittance of
the first amplitude element of the proposed pair

T1(μ) = exp

{
−c
[

1 +
(μ
�

)3
]}

rect
( μ

4�

)
. (8.36)

As before, in Eq. (8.36) we use a lower case letter “c” for denoting a dimensionless
damping factor of the Gaussian function. From Eq. (8.36), we note that the length
of the mask is 4�. At its edges the amplitude transmittance has real positive values.
Now, the amplitude transmittance of the of the second mask is

T2(μ) = exp

{
−c
[

1 −
(μ
�

)3
]}

rect
( μ

4�

)
. (8.37)

Again the length of the mask is 4�, and at its edges the amplitude transmittance has
real positive values. By introducing a lateral displacement, σ; between the masks,
the overall amplitude transmittance inside the pupil aperture is

T (μ; σ ) = T1

(
μ+ σ

2

)
T2

(
μ− σ

2

)
. (8.38)

If one substitutes Eqs. (8.36) and (8.37) in Eq. (8.38) one obtains

T (μ; σ ) = exp

{
−2c

[
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)3
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exp

{
−
(

3cσ
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�
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}
rect
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)
. (8.39)

It is apparent from Eq. (8.39) that inside the pupil aperture, the overall amplitude
transmittance varies as a Gaussian function. Its half-width can be modified by chang-
ing the lateral amount of displacement in the Fourier domain. In reference [51] we
have extended the above result to 2-D.

Here it is relevant to note that if one uses simultaneously the tunable cubic phase
mask and the tunable Gaussian amplitude mask, then one has two extra degrees
of freedom for setting the pre-processing filter; as was discussed in the previous
section. However, we also note that so far our tunable devices are only useful when
the complex amplitude profiles can be expressed as monomials to an integer power.
We discuss next an optical technique for overcoming this limitation.
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After proposing his varifocal technique, Lohmann applied his result for generating
tunable zone plates. Lohmann and Paris have proposed the use of helical modulations
[52] for generating other types of varifocal zone plates. In their proposal, Lohmann
and Paris suggested the use of an average angular operation for achieving tunable
devices that have only radial variations.

Later on, Burch and Williams [53] used Lohmann’s technique for implementing
an alignment device, which has the interesting twist of incorporating and additional
phase factor as proposed for Alvarez in his varifocal technique.

Bernet and coworkers have revisited the use of diffractive elements for imple-
menting varifocal lenses using helical variations [54–56]. And rather recently, some
of us, have suggested the use of two helical refractive elements for setting several
varifocal devices [57, 58]. In what follows we revisited these latter proposals.

For achieving our final goal, in this section, we note that Bryngdahl analysed in-
terferograms in terms of polar coordinates [59]. In Fig. 8.16 we show some schematic
diagrams for describing the generation of interference patterns. The interferograms
are generated by superimposing a plane reference wavefront with one of the fol-
lowing object beams. At the top of Fig. 8.16 the object beam has quadratic radial
variations; while at the middle of Fig. 8.16 the object beam has linear helical varia-
tions (angular variations). At the bottom of Fig. 8.16 the object beam has both radial
as well as helical variations.

For describing the optical devices of our interest, we consider the following
complex amplitude transmittance

Q(ρ,ϕ) = exp{iaR(ρ)ϕ}. (8.40)

In Eq. (8.40) we use the Greek letters ρ and ϕ for denoting the radial spatial frequency
and the polar angle at the pupil aperture, respectively. The Latin letter a represents the
optical path difference of the optical device. For making comparisons it is useful to
remember that a lens, with fixed optical power, has the following complex amplitude
transmittance

Q(ρ,ϕ) = exp

{
ia
( ρ
�

)2
}
. (8.41)

In Eq. (8.41) the Greek letter � denotes the maximum value of the radial spatial
frequency. This value is typically called the cut-off spatial frequency of the pupil
aperture. The interferogram of the quadratic phase variation in Eq. (8.41) is a Fresnel
zone plate; as is shown in the left-hand side of Fig. 8.17.

If the lens has also helical variations then the complex amplitude transmittance is

Q(ρ,ϕ) = exp

{
ia
( ρ
�

)2
ϕ

}
. (8.42)

At the right hand side of Fig. 8.17, we show the interference pattern that is gen-
erated between a plane wavefront and the complex amplitude transmittance in Eq.
(8.42). At the left-hand side of Fig. 8.18, we show the phase variations in Eq. (8.42).
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Fig. 8.16 Interferograms obtained as the interference between a reference plane wavefront and
three different object beams: a radial beam, b helical beam, and c a beam having both radial and
helical variations. The object beam is obtained after passing through the optical device

The interferogram, at the right-hand side of the same figure, was first discussed by
Lohmann and Paris.

Next, we note that rather than introducing a lateral displacement between the
elements of the pair (as depicted in at the left-hand side of Fig. 8.19) we can introduce
an in-plane rotation between the elements of the pair (as depicted at the right-hand
side of Fig. 8.19).
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Fig. 8.17 Interference patterns that are obtained using a reference plane wavefront and three differ-
ent object beams: radial beam, helical beam, and a beam having both radial and helical variations,
respectively

Fig. 8.18 Three different views of the helical phase in Eq. (8.41): 3-D curve, 2-D pseudo color
variations and the interference pattern that is generated when using as reference beam a uniform
plane wave

Fig. 8.19 Tunable devices using a controllable lateral shear, with spatial frequency σ, or a
controllable in-plane rotation angle β
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For this later application, we consider that the complex amplitude transmittance
of the first refractive element is

T1(ρ,ϕ) = exp
{
i2πaϕ

( ρ
�

)m}
. (8.43)

In Eq. (8.42) the Latin letter m denotes the power of the radial variable. The complex
amplitude transmittance of the second refractive element is the complex conjugate
of the first element. That is,

T2(ρ,ϕ) = exp
{
−i2πaϕ

( ρ
�

)m}
. (8.44)

Now, if both refractive elements are used as a pair, and we introduce an in-
plane rotation between the elements of the pair (say by an angle β) the overall
complex amplitude transmittance is

T (ρ;β) = T1

(
ρ,ϕ + β

2

)
T2

(
ρ,ϕ − β

2

)

= exp
{
i2πaβ

( ρ
�

)m}
. (8.45)

It is apparent from Eq. (8.44) that the complex amplitude transmittance of the pair
is independent of the helical variable ϕ. Furthermore, we recognize that the angle β

modifies linearly the value of the optical path difference. And in this manner, one can
exploit the angular variation for controlling the optical path difference of the radial
focalizer.

In Fig. 8.20, we show the use of the tunable focalizer as spatial filters in an
afocal, optical processor. It is convenient to note that the proposed optical technique,
as expressed in Eq. (8.44), can be extended to wide range of radial variations. In
mathematical terms,

T (ρ;β) = exp

{
i2πa

(
ϕ + β

2

)
R(ρ)

}

exp

{
−i2πa

(
ϕ − β

2

)
R(ρ)

}

= exp{i2πaβR(ρ)}. (8.46)

Next we describe a method for optically tuning the half-width of hyper Gaussian
apodizers; as is discussed in references [60, 61]. As depicted in Fig. 8.20, we consider
that at the Fraunhofer plane we place two amplitude masks forming a pair. The
amplitude transmittance of the first mask is

T1(ρ,ϕ; n) = exp

{
−1

2

( ρ
�

)n (
1 + ϕ

2π

)}
circ

( ρ
�

)
. (8.47)
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Fig. 8.20 Optical processor that employs a pair of helical masks at the Fraunhofer plane

In Eq. (8.47) the Greek letters ρ and ϕ denote again the polar coordinates in the
pupil aperture. The maximum value of the polar coordinate, ρ, is the cut-off spatial
frequency �. The circ function represents the pupil aperture, 0 ≤ ρ ≤�. The Latin
letter “n” denotes the power of the radial variable. The polar angle varies inside the
interval 0 ≤ ϕ< 2π. We note that if n = 2, one has an amplitude transmittance that
is proportional to a Gaussian function. A sub Gaussian mask is defined by a value
of n< 2. And again if n> 2, one has super Gaussian masks. We denote as hyper
Gaussian any amplitude transmittance within the range 0< n< 10. We recognize
that the amplitude transmittance in Eq. (8.47) is bounded.

The amplitude transmittance of the second mask is

T2(ρ,ϕ; n) = exp

{
−1

2

( ρ
�

)n (
1 − ϕ

2π

)}
circ

( ρ
�

)
. (8.48)

Again we note that the amplitude transmittance in Eq. (8.48) is bounded. Next, we
place in contact these two previously described masks for setting a pair. The overall
complex amplitude transmittance becomes
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Fig. 8.21 Tuning the half-width of a Gaussian apodizer by the use of a pair of asymmetric masks
that have helical amplitude variations

T (ρ;β) = T1

(
ρ,ϕ + β

2

)
T2

(
ρ,ϕ − β

2

)

= exp

{
− β

4π
R(ρ)

}
circ

( ρ
�

)
. (8.49)

From Eq. (8.49) it is clear that the overall amplitude transmittance does not longer
depend on the angular variable ϕ. That is, the overall amplitude transmittance has
radial symmetry. Furthermore, the half-width of the radially symmetric, hyper Gaus-
sian masks can be controlled by changing the rotation angle β. This general result is
illustrated for the particular case of n = 2, in Fig. 8.21.

Along the first line, of Fig. 8.21, we show the 3-D amplitude distributions of the
transmittances in Eqs. (8.47), (8.48) and (8.49) respectively. Along the second line,
of Fig. 8.21, we show the amplitude variations as 2-D color encoded pictures. It is
interesting to note that the product of the asymmetrical masks in the first and second
columns, of Fig. 8.21, generates the symmetrical masks shown at the third column
of Fig. 8.21.

Finally, we emphasize on the many possibilities of this procedure by using the
illustrations in Fig. 8.22. Along the first line we display the 1-D amplitude profiles
of a sub Gaussian mask, n = 1.5, a Gaussian mask, n = 2, and super Gaussian mask,
n = 8. The amplitude variations of these amplitude masks are shown as 2-D pictures
along the second line of Fig. 8.22. Along the third line, of the same figure, we display
3-D curves.
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Fig. 8.22 Radially symmetric hyper Gaussian apodizer with tunable half-widths, which were
generated by using a pair of masks that have helical amplitude variations

It is apparent from Eq. (8.49) and from Figs. 8.21 and 8.22 that by using a proper
pair of masks, which have helical amplitude variations, one can control the half-
width of a rather large set of hyper Gaussian masks. Of course, in principle one can
extend the previous results to other types of apodizers.

8.5 Final Remarks

We have indicated that one can employ a rather simply optical processor for visualiz-
ing, as a 2-D picture, the evolution of a 2-D scalar wave; as is predicted by Helmholtz
equation. For this type of application, one needs to use a very narrow slit that follows
a semicircle over an otherwise opaque mask.

Then, we have noted that within the paraxial regime, Helmholtz equation has a
different expression. Hence, for visualizing the evolution of the point spread function
with focus error, one needs to use a very narrow slit that follows now a parabolic
curve.

The above results were extended for visualizing the influence that the optical path
difference (of certain phase mask) has over the point spread function of an optical
system. We have discussed the use of another optical processor for obtaining displays
that describe the impact of the optical path difference over the modulation transfer
function.

Then, we have discussed the use of anamorphic processors for visualizing the
generation of the ambiguity function of a 1-D pupil mask. We have related this
method with the visualization of the optical transfer function with variable focus
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errors. When analyzing nonconventional devices using the ambiguity function, it is
convenient to take into account the results obtained using the narrow slits.

Next, we have noted that the mathematical tools employed for describing the
ambiguity function have a physical counterpart when using two refractive elements
forming a pair, for implementing varifocal lenses; here denoted as Alvarez-Lohmann
lenses. We have shown that the Alvarez-Lohmann lenses have an equivalent, when
setting Gaussian apodizers with variable half-width.

We have indicated that the use of a pair of refractive elements, for controlling
the optical power of a lens, leads to optical elements with helical phase variations.
We have shown that one can control the optical path difference of a wide range of
radial focalizers, if one uses a pair of refractive elements that have both helical phase
variations and radial phase variations. To this end, one introduces an in-plane rotation
between the refractive elements of the pair.

Finally, based on the previous results, we have discussed the use of two masks that
have helical and radial amplitude variations for setting a large set of hyper Gaussian
apodizers, with tunable half-width. Again for this application, one needs to introduce
an in-plane rotation between the amplitude elements of the pair.
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