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Abstract

We address a new approach to the problem of improving the quality of remote-sensing

images obtained with several passive systems, in which case we propose to exploit the idea of
neural-network-based imaging system fusion. The fusion problem is stated and treated as an
aggregate inverse problem of restoration of the original image from the degraded data
provided by several image-formation systems. The non-parametric maximum entropy

regularization methodology is applied to solve the restoration problem with the control of
balance between the gained spatial resolution and noise suppression in the resulting image.
The restoration and fusion are performed by minimizing the energy function of the multistate

Hopfield-type neural network, which integrates the model parameters of all sensor systems
incorporating a priori and measurement information. Simulation examples are presented to
illustrate the good overall performance of the fused restoration achieved with the proposed

neural network algorithm. # 2001 The Franklin Institute. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The need for improving the quality of images arises in many practical applications,
one of those is remote sensing imagery with several passive systems. Any remote-
sensed image, which is actually formed, inevitably suffers from degradations due to
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the finite system resolution and noise in observations. The image restoration is an
important problem in the theory and application of remote sensing, signal and image
processing. It has received a great deal of attention in the past decades and many
different techniques are now available, e.g. [1–26]. These methods can be roughly
categorized into two classes: those, which work on the parametrical model-based
properties of the images, and those that do not use image representation in a
parametrical form. In this study, we will refer to the latter as restoration methods,
since they are more suitable for real-world remote sensing scenarios because
environmental scenes are usually too complex to be approximated by the finite-order
parametrical models [4,14,18]. The maximum entropy (ME) approach [2,6,10,12,17]
seems to be one of the most attractive among the non-parametrical image
reconstruction methods. It has been successfully used in different application areas
for the restoration of fine image structures severely degraded in a noisy environment.
However, the greatest advantage of the ME method in spite of its seeming
computational complexity is that it may be efficiently implemented using artificial
neural network (NN) computing. Several Hopfield-type networks for digital image
restoration were designed in [12,15,17,19,22] based on the basic regularization
methodology for minimizing the energy function of the NN associated with the cost
function of the corresponding optimization problem.

Increasing capability of co-registered multisystem remote sensing imagery has
spurred development of various techniques for system data fusion. These techniques
aim to produce the restored images with improved performances of information
content, resolution and accuracy [7,9,13]. In engineering practice, it is very
important, on one hand, to have some theoretical guarantees that the developed
fusion method can improve the image performances before its application to real
systems, but on the other hand, a unified computational structure of the fusion
algorithm is desired, in which case it allows coping with different system models. For
this reason, the framework of NNs is very convenient for fusion design because of
the NNs’ fault-tolerant nature, computational capabilities and flexible adjustment.

In this paper, the problem of image restoration with system fusion is stated and
treated as an ill-conditioned inverse problem of restoration of the original image
from the degraded images received from different passive-sensing systems. This
problem is approached by exploitation of information on the performances of the
corresponding systems combined with prior realistic knowledge about the properties
of the scene contained in the ME a priori image model. A specific aggregate
regularization problem is stated and solved to reach the aims of system fusion with
control of the design parameters, which influence the overall restoration
performances. To accomplish the system fusion computationally, we investigated
the fine structure of the multistate maximum entropy neural network (MENN)
proposed by Li et al. [22], and modified the MENN’s algorithm to enable the
network to solve the aggregate fusion and restoration problems. This was
accomplished by processing the data provided by several imaging systems
incorporating measurements, system calibration and image model information. We
also present a quantitative and qualitative characterization of the performance of the
developed MENN algorithm evaluated through software simulation, along with it
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comparison with the regularized inverse filtering and NN-based image restoration
and fusion techniques in an example of application to passive radar sensing.

The paper is organized as follows: Section 2 states the system fusion concept for
image restoration. The regularization formalism of the problem is developed in
Section 3. The MENN for system fusion is presented in Section 4 followed by
simulation results in Section 5 and concluding remarks in Section 6.

2. The problem of image restoration with system fusion

2.1. Problem formulation

In passive sensing, the signal field, in which the system sensor or array of sensors
are immersed, is assumed to be created by some continuous distribution of far-
distant energy sources, each sending out traveling waves which sweep across the
sensor array (antenna) as plane wave fronts. The various elementary sources are
considered to be random and independent of one another. The spatial distribution of
the average power of the signal wavefield impinging on the sensor system from
different angular directions h2 Y �R2, is characterized by the spatial power
spectrum pattern nðhÞ, which is referred to as the original image of the environment
[1,2]. In remote sensing imagery [6,14], a model, which is most often used, expresses
the degraded image produced by a passive system as a sum of the noise and a linear
convolution of the original image with the system’s antenna receiving pattern. The
latter is usually referred to (in the terms of image processing theory [11,15]) as the
point-spread function (PSF) of the image formation system. The noise is accounted
to that of the system noise, components in the degraded image that correspond to
environmental noise, and additive noise induced at the image recording stage. These
noise components are usually modeled as statistically independent of the image and
one another, while in some imaging scenarios the signal-dependent noise model may
also be utilized [5,22]. Applying the linear model conventional for the practical
remote sensing systems [6,14], the actual continuous image formed by the passive
system is expressed as

uðhÞ ¼
Z
Y
Fðh; h0Þnðh0Þ dh0 þ nðhÞ; h; h0 2 Y; ð1Þ

where Fðh; h0Þ is the system’s PSF, which, in general, can be spatially varying, nðhÞ
the original image, nðhÞ the noise in the image, and uðhÞ the degraded image
produced by the system.

Dependent on the assumed dimension of the environmental scene, one-
dimensional ðY �R1Þ or two-dimensional ðY �R2Þ continuous images are con-
sidered in remote-sensing imagery [5,6,14,18]. To represent the digital-form
approximation of the physical image formation model (1) define K-dimensional
(K�D in our notation) image subspace VKðYÞ ¼ spank2KfjkðhÞg spanned by some
chosen set of basis functions jkðhÞ ordered by the index, k¼ 1; . . . ; K , which are
considered to be real-valued orthonormal functions in L2ðYÞ Hilbert space [9]. The
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orthogonal projections of the images nðhÞ, uðhÞ and noise nðhÞ onto VKðYÞ are
represented by the relevant vectors v, u and n of their discrete-form approximations
with the elements given by

nk ¼ n hð Þ;jk hð Þ½ �; uk ¼ u hð Þ;jk hð Þ½ �; nk ¼ n hð Þ;jk hð Þ½ �; k ¼ 1; . . . ;K ; ð2Þ

where ½ f ;jk� defines the inner product of the corresponding real-valued functions in
L2ðYÞ space, i.e. f ;jk½ � ¼

R
Y f ðhÞjkðhÞ dh. The K2Dmatrix-form approximation of

the system’s PSF Fðh; h0Þ is given by the K
K non-negative ‘‘blur matrix’’ F with
elements

Fki ¼ F h; h0ð Þji h0ð Þ;jk hð Þ½ � ¼
Z Z

Y
F h; h0ð Þji h0ð Þjk hð Þ dh0 dh; k; i ¼ 1; . . . ;K

ð3Þ

In the simplest case of applying the regular plane (i.e. equidistant 2-D rectangular)
image sampling scheme [16], the two-dimensional d-basis is applied, in which case the
relevant image vectors are simply composed with the lexicographically ordered
image samples by stacking either the rows or columns of each discrete plane image
into a vector. Assuming that the original sampled image is of support N
N, than
these vectors have supports K
1, where K ¼ N2, and the PSF matrix F represents
the K
K superposition blur operator. When utilizing the stationary model for the
blur, i.e. Fðh; h0Þ ¼ Fðh � h0Þ, F becomes a block-Toeplitz circulant matrix
representing the linear spatial convolution-form blur operator [19]. More
sophisticated quantification methods, which are also applicable for spatially varying
PSF, employ the wavelets with special approximation properties as the basis for
image representation in both one- and two-dimensional image scenes [25]. Applying
any of these quantification schemes, the continuous-form image formation model (1)
is transformed to the relevant K-D vector form

u ¼ Fvþ n; ð4Þ

where the elements of the degraded image vector u, original image vector v, noise
vector n and discrete-form PSF (system blur matrix) F are defined by inner products
(2) and (3), respectively. Eq. (4) is recognized to be a well-known linear image
degradation equation. The degraded image u is viewed as a rough estimate of the
original image vector v formed by the system.

Let us consider now M different degraded images uð1Þ; . . . ; uðMÞ of the same
original image v obtained with M different imaging systems or methods. System or
method fusion, as addressed here, utilizes a mathematical model of the mechanism
that seeks to apply the aggregate inverse procedure to restore the original image
from the data uð1Þ; . . . ; uðMÞ. In the system fusion problem, we associate M different
models of the PSFs with the corresponding image formation systems. In the method
fusion problem, we assume one given system but apply M different image formation
algorithms to acquire the images uð1Þ; . . . ; uðMÞ, respectively. In both cases, instead of
one equation (4) we have the system of M equations

u mð Þ ¼ F mð Þvþ n mð Þ; m ¼ 1; . . . ;M ð5Þ

Yu.V. Shkvarko et al. / Journal of the Franklin Institute 338 (2001) 405–427408



with M different PSFs FðmÞ and different noise vectors nðmÞ;m ¼ 1; . . . ;M,
respectively, with the further assumption that these zero mean (not necessarily
Gaussian) noises are uncorrelated from system to system.

The fusion problem that we consider here is stated as an inverse problem of
restoration of the original image v from M actually formed degraded images uðmÞ,
given the systems’ PSFs FðmÞ;m ¼ 1; . . . ;M. No detailed prior knowledge about
probabilistic models of the data is implied, thus a priori model uncertainity is
assumed conventional for the practical remote sensing scenarios.

2.2. ME regularization

It is well known that the PSFs are ill-conditioned for practical passive image
formation systems [5,6]. Moreover, the statistical uncertainties about an original
image and noise significantly complicate the fusion problem making the statistically
optimal Bayesian inference techniques [20,24] inapplicable. Hence, a robust
deterministic regularization-based approach should be applied when dealing with
the formulated above problem. The idea of regularization is to seek for a feasible
solution v̂, which, on one hand, provides maximum fidelity to the data minimizing
some integrate measure of total energy of the residual error between the models FðmÞv
and the degraded images uðmÞ, and, on the other hand, the solution should be
continuous, i.e. well conditioned with respect to noise fluctuations [11]. The basic
feature of regularization is the introduction of a compromise between fidelity to the
data and fidelity to some prior information about the solution [3,12]. Dependent on
the approach of introducing prior information, the regularization methods can be
categorized into two general classes: parametrical model-based and non-parame-
trical. The first approach uses some low-order parametrical model for data
approximation (e.g. ARMA model [12], exponential Prony’s model [4], different
polynomial approximations [9,26], etc.), in which case the image restoration problem
is reduced to the well-posed problem of model identification and parameter
estimation. These methods imply a high level of confidence to the used parametrical
representation of the data, moreover, the selection of a particular model is the crucial
and ambiguous item in the parametrical approximation-based regularization [4,9].

In remote sensing imagery, we generally cannot use the parametrical models of the
environmental data at all because of prior uncertainty concerning the scenes, which
were actually sensed [14], hence, the non-parametric regularization techniques
should be applied. Among such methods [5,6,15,16], the ME regularization
approach is recognized to be one of the most grounded because maximizing the
entropy as a prior is the most consistent method (in the information theory sense) of
selecting a single image from the many images that fit the data [22]. These items were
widely discussed in the literature, e.g. [6,15,20,22,25], that is why we do not detail
them here and make preference to the ME regularization method, in which the prior
information about the image is associated with maximization of the image entropy.

According to an ME model [2,6], the whole image is viewed as a composition of a
great amount of elementary discrete counts (speckles or pixels) with the elementary
‘‘pixel brightness’’ b. Every particular image value is represented as a digital pixel
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value, i.e. vk ¼ Zkb; k ¼ 1; . . . ;K , where Zk is a number of counts in the kth image
pixel. The total number of pixel counts in a whole image is assumed to be preserved
constant, i.e.

PK
k¼1 Zk ¼ const, hence, the total image brightness is kept constant as

well,
PK

k¼1 Zkb ¼ B. The normalized pixel values vk=B are viewed as those
representing the relevant values of the hypothetical discrete probability distribution

pk ¼
nk
B
;
XK
k¼1

pk ¼ 1 ð6Þ

associated with the corresponding image distribution over the scene,
vk; k ¼ 1; . . . ;K . This distribution (6) is characterized by entropy

H pð Þ ¼ �
XK
k¼1

pk ln pk: ð7Þ

The image entropy function HðvÞ is defined as a structural copy of (7)

H vð Þ ¼ �
XK
k¼1

vk ln vk ð8Þ

related to HðpÞ as

H pð Þ ¼ �
XK
k¼1

vk

B
ln

vk

B
¼ c1H vð Þ � c2;

where c1 ¼ 1=B and c2¼ ln B are the normalization constants independent on the
particular image vector v. The ME image model implies the maximum of
uncertainity about the probabilistic distribution (6) of the image over the scene.
Viewed as a priori information for restoration, the ME model is formalized by
imposing the requirement of the maximization of entropyHðpÞ, hence, maximization
of the image entropy function HðvÞ or minimization of its negative value, 2HðvÞ.

2.3. Regularization formalism of the system fusion problem

In the aggregate regularization approach that we address here, the contrivance for
combining the image restoration problems when performing system fusion is the
formation of the augmented cost function

E vjkð Þ ¼ �l0H vð Þ þ 1

2

XM
m¼1

lmJm vð Þ þ 1

2
lMþ1JMþ1 vð Þ; ð9Þ

and seeking for a solution v̂ that minimizes the cost (9). Here, HðvÞ is the image
entropy introduced by (8), l0; l1; . . . ; lM ; lMþ1 represent the weight parameters,
commonly referred to as the regularization parameters, and JmðvÞ are the partial
error functions defined as the squares of the l2 norms of the discrepancies between
the actually formed degraded images and the noise-free models of the blurred
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images, respectively,

Jm vð Þ ¼ ku mð Þ � F mð Þvk2 ¼ u mð Þ � F mð Þv
� �T

u mð Þ � F mð Þv
� �

; m ¼ 1; . . . ;M:
ð10Þ

The last term JMþ1ðvÞ in (9) is a conventional Tikhonov’s stabilizer [12] that
formalizes prior model assumptions about the ‘‘visual quality’’ of the desired image
and is defined as the weighted squared norm

JMþ1 vð Þ ¼ kvk2P ¼ Lvð ÞTLv ¼ vTPv; ð11Þ

which naturally makes the selection of the weight matrix P ¼ LTL problem
dependent. This term imposes a smoothness constraint, which suggests that most
images are relatively flat with limited spatial high-frequency activity [16], and thus it
is appropriate to minimize the amount of high-pass energy in the restored image. To
make the term JMþ1ðvÞ represent the squared norm of the high-frequency image
components, matrix L in (11) should be a numerical approximation of the Laplacian
operator L ¼ @2=@h2 [9]. Applying the general approximation scheme (2), (3) yields
the weight matrix P in the form of a pseudo differential operator composed with
elements Pki; k; i ¼ 1; . . . ;K , defined by the inner products, Pki¼ ½LjiðhÞ;LjkðhÞ�,
while for the most simple practical case of regular image sampling, the discrete-form
approximation of the Laplacian operator [3] is given by the matrix

L ¼

1 �1 0 0 0 :::

�1 2 �1 0 0 :::

0 �1 2 �1 0 :::

0 0 �1 2 �1 :::

0 0 0 �1 2 :::

::: ::: ::: ::: ::: :::

2
6666666664

3
7777777775
; ð12Þ

in which case JMþ1ðvÞ is referred to (in regularization theory [12] ) as the Tikhonov’s
stabilizer of the second order. The sum OðvjlMþ1Þ ¼ 2l0HðvÞ þ ð1=2ÞlMþ1JMþ1ðvÞ
comprises a composed regularizing term in the cost function that stabilizes the
solution making it smooth (and therefore continuous [12]). Without any loss of
generality, the cost function (9) can be normalized by any positive number, e.g. l0.
Hence, for the purpose of simplicity, since now we will put the weight of the entropy
in the augmented cost (9) equal to unity, l0 ¼ 1.

The next step is to express the cost function (9) in an expanded form making the

substitutions for the data u mð Þ ¼ u
ðmÞ
1 . . . u

ðmÞ
K

� �
T

defined by Eqs. (5). Expanding
Eq. (9) yields

E vjkð Þ ¼
XK
k¼1

vk ln vk þ 1

2

XM
m¼1

lm
XK
j¼1

u
mð Þ
j �

XK
k¼1

F
mð Þ
jk vk

 !2
2
4

3
5

8<
:

9=
;

þ 1

2
lMþ1

XK
k¼1

XK
i¼1

Pkivkvi; ð13Þ
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where F
ðmÞ
ik and Pik define the corresponding ikth elements of the PSF matrices FðmÞ

and pseudo differential operator P, respectively, i; k ¼ 1; . . . ;K .
Expanding the squared terms in (13) and rearranging the resultant expressions, we

can rewrite (13) as

E vjkð Þ ¼ � 1

2

XK
k¼1

XK
i¼1

vkvi �
XM
m¼1

lm
XK
j¼1

F
mð Þ
jk F

mð Þ
ji

" #
� lMþ1Pki

( )

�
XK
k¼1

vk �ln vk þ
XM
m¼1

lm
XK
j¼1

F
mð Þ
jk u

mð Þ
j

" #( )
þ CE ; ð14Þ

where

CE ¼ 1

2

XM
m¼1

lm
XK
j¼1

u
mð Þ
j

� �2" #
ð15Þ

is a constant term independent of the image vector.
In the frame of the ME regularization approach to system fusion, the restored

image is to be found as a solution of the problem

v̂ ¼ argmin
v

E vjkð Þ ð16Þ

of minimizing the cost function (14) with respect to v for the assigned (or adjusted)
values of the regularization parameters, which compose vector k ¼
ðl1 . . . lM lMþ1ÞT. The proper selection of k is associated with parametrical control
of the fusion process. It is important to note that the ME solution v̂ exists and is
guaranteed to be unique for a given k because the surfaces of all functions that
compose EðvjkÞ are convex. Furthermore, the entropy is defined only for the positive
values, hence, the ME solution is guaranteed to be positive. But one can deduce that
due to the non-linearity of the objective function, the solution of the parametrically
controlled image restoration problem (16) will require extremely complex computa-
tions and result in the technically intractable fusion scheme if this problem is solved
employing the standard direct minimization techniques [5,13].

3. Control of the regularization degrees of freedom

3.1. Problem aggregation

The regularization parameters l1; . . . ; lM ; lMþ1 (real-valued non-negative num-
bers) determine the relative importance of the partial terms in the composed cost
EðvjkÞ viewed as a function of the desired image v subject to the given (assigned)
vector k. These parameters control the tradeoff between fidelity to the data (as
expressed by the terms JmðvÞ) and smoothness of the solution (as expressed by
OðvÞ ¼ OðvjlMþ1Þ). In remote sensing imagery, parameter lMþ1 is always chosen
empirically and placed relatively small ðlMþ1� 102121024Þ, because a preference
should be given to the measurement data and ME model information [6,9].
Assigning lMþ1 ¼ 0, we simply do not require suppression of the high-frequency
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image activity imposed by the Tikhonov’s stabilizer implying that the model
requirements to the ‘‘visual quality’’ of the restored image are fully expressed by the
entropy term in the augmented cost function. Control of the other regularization
parameters provides additional degrees of freedom of the fusion method. The more
value we assign to parameter lm, the more weight we assign for the relevant error
measure JmðvÞ, hence, the greater credibility to the actually acquired image
(measurement data) and lower importance of the prior image model are assumed.
Note, that system fusion tasks are meaningful only in that case when the fidelity to
the actually used measurement data is implied to be undoubtedly high and prevail
over the weight of a priori information.

When assigning the particular values to the regularization parameters, the
question of their preferred selection arises. In the conventional empirical
decentralized fusion approach [13], the data acquired by partial systems are usually
aggregated with equal weights, thus no optimization mechanism for control of the
regularization degrees of freedom is employed. In this section, we develop a method
for system data weighting that permits to optimize the balance between the attained
spatial resolution and residual noise in the fused image.

Let us define a new set of regularization parameters o, pm related to lm as

lm ¼ pm
1

o
;
XM
m¼1

lm ¼ 1

o
;
XM
m¼1

pm ¼ 1; m ¼ 1; . . . ;M; ð17Þ

and associate the degrees of freedom of the fusion problem with the sum parameter
o21 and vector p ¼ ðp1 . . . pMÞT of the normalized weight parameters pm; 04pm41.

Next, to represent the aggregate formalism of the initial fusion problem (16), let us
compose the data and noise into the KM
1 block vectors ~u and ~n as follows:

~u ¼ u 1ð ÞT . . . u Mð ÞT
� �T

; ~n ¼ n 1ð ÞT . . . n Mð ÞT
� �T

ð18Þ

and summarize the systems in the aggregate KM
M system operator composed as

~F ¼ F 1ð ÞT . . . F Mð ÞT
� �T

: ð19Þ

Let P represents the KM
KM block-diagonal weight matrix,

P ¼ blockdiagonal p1I; . . . ; pMIf g: ð20Þ

Using definitions (17)–(20), we may rewrite Eq. (9) for the cost function as follows:

E vjkð Þ ¼ E vjp;oð Þ ¼ 1
2
~u� ~Fv
� �T

P ~u� ~Fv
� �

þ oO vð Þ: ð21Þ

The fusion problem in the aggregate form can now be reformulated as the
variational problem

inf
v;o;p

1
2
~u� ~Fv
� �T

P ~u� ~Fv
� �

þ oO vð Þ: v 2 V ; ~u 2 ~Ujo50; p 2 P
n o

ð22Þ

P ¼ p: 04pm41;m ¼ 1; . . . ;M;
XM
m¼1

pm ¼ 1

( )
;
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which naturally makes the selection of parameters o, p problem dependent. We
are now interested in optimizing such a selection, based on the analysis of
the dependence of the performances of optimal solution v̂ of problem (22)
on o, p.

3.2. Statistical adjustment of the regularization parameters

Hypothesize, first, the standard randomized model of the aggregate data,
~u ¼ ~Fvþ ~n, characterized by the image mean vector mv¼ hvi, image covariance
matrix Rv¼ hðv2mvÞðv2mvÞTi, and zero-mean noise with the correlation matrix R~n.
In that case, the least-mean squares (LMS) fusion strategy leads to the Bayesian
LMS linear optimal restoration [13], v̂B ¼ mv þQB ~u� ~Fmv

� �
, with the Bayesian

restoration operator QB ¼ ~F
T
R

�
n̈
�1~Fþ R�1

v Þ�1~F
T
Rn̈

�1.
In practical remote sensing [14], R~n is usually approximated as KM
KM block

diagonal matrix

R~n � N ¼ block diagonal N1I; . . . ;NMIf g; ð23Þ

where Nm represents the noise intensity in the mth degraded image, m ¼ 1; . . . ;M.
Similarly, for the purposes of analysis, it is conventional to approximate Rv as K
K
diagonal matrix [14]:

Rv � v0ð Þ2I; ð24Þ

where v0 ¼ 1=Kð Þ
PK

k¼1 vk represents the average gray level of the image.
Taking these approximations, the Bayesian linear restoration operator becomes
simply

QB ¼ ~F
T
N�1~Fþ v0ð Þ�2

I
� ��1

~F
T
N�1: ð25Þ

It is well known that Bayesian solution v̂B is characterized by the optimal balance (in
the LMS sense) between the gained resolution and noise suppression in the restored
image [9].

The regularized fusion approach is formalized by variational problem (22).
Although the solution of the problem (22) is nonlinear, associating that with the
output of some hypothetical linear restoration filter Qo;p ¼ Qðo; pÞ, the selection of
the filter’s parameters o, p can be optimized in such a fashion that Qo;p provides an
approximation to the Bayesian operator (25), in which case the resolution-to-noise
balance in the actual fused image v̂ approaches to that attained in the hypothetical
Bayesian solution v̂B. To derive the approximating filter Qo;p consider the Euler
equation related to the variational problem (22),

~F
T
P~Fvþ of vð Þ ¼ ~F

T
P~u; ð26Þ

where f vð Þ ¼ qOðvÞ=qv defines the K
 1 gradient vector.
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Consider that the solution, v̂o;p ¼ v̂ o; pð Þ, of Eq. (26) is found and is close (for the
properly chosen o, p) to the true image v, i.e. we may approximately express

f v̂o;p
� �

� f vð Þ � Av̂ðo;pÞ v̂o;p � v
� �

� Av v̂o;p � v
� �

; ð27Þ
where Av̂ðo;pÞ, Av are the K
K matrices, Av̂ðo;pÞ ¼ @fðv̂o;pÞ=@v̂o;p and Av ¼ @fðvÞ=@v,
respectively. If v̂o;p is a solution of the Euler equation (26) (e.g. one found applying
the NN-based method, to be presented in the next section) then using approxima-
tions (27) and representing ~u ¼ ~Fvþ ~n, we can rewrite Eq. (26) as

~F
T
P~Fþ oAv̂ðoÞ

� �
v̂o � ~F

T
P~Fþ oAv̂ðoÞ

� �
v� f v̂o;p

� �
þ ~F

T
P~n;

that yields

v̂o;p � v� ~F
T
P~Fþ oAv̂ðo;pÞ

� ��1

f v̂o;p
� �

þ ~F
T
P~Fþ oAv̂ðo;pÞ

� ��1
~F
T
P~n ð28Þ

Next, associating the regularizing term with the image entropy, OðvÞ ¼
�HðvÞ ¼

PK
k¼1 vk ln vk, the approximation to Av̂ðo;pÞ can be represented as

Av̂ðo;pÞ � Av ¼
@fðvÞ
@v

¼ @2OðvÞ
@v2

¼ diag v�1
1 ; . . . ; v�1

K

� �
� 1=v0ð ÞI ð29Þ

Using approximation (29), Eq. (28) may be rewritten in the following compact form:

v̂o;p � v� vs þQo;p~n; ð30Þ
where

Qo;p ¼ ~F
T
P~Fþ o=v0I

� ��1
~F
T
P; ð31Þ

the term, vs ¼ ~F
T
P~Fþ o=v0I

� ��1

f v̂o;p
� �

, pertains to a systematic error in the
restored image due to finite resolution, while the term, Qo;p~n, counts to the noise
component in the solution. The impact of noise is characterized by the noise error
measure (noise energy)

rn o; pð Þ ¼ kQo;p~nk2
D E

¼ trace Qo;pRnQ
T
o;p

n o
: ð32Þ

This measure (32) is recognized to be the same one as that for the corresponding
noise energy at the output of a hypothetical linear restoration filter Qo;p applied to
the aggregate data ~u [13]. Thus viewing (31) as an approximation to the linear
Bayesian restoration filter (24), yields the following statistical scheme for selection of
the regularization parameters:

p̂m ¼ v0 Nm

XM
j¼1

n0=Nj

 !�1

; ô
XM
j¼1

n0=Nj

 !�1

; l̂m ¼ v0=Nm; m ¼ 1; . . . ;M;

ð33Þ
in which case two filters (25) and (31) coincide. The main problem with this approach
is that the knowledge of the average image gray level v0 and noise intensities Nm is
needed to compute the estimates (33). In order to pre-estimate these parameters, we
must have access to the sensors and rather substantial calibration experiments must
be carried out.
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3.3. Use of calibration data

According to statistical scheme (33), regularization parameters lm are selected
proportionally to the expected image average gray value v0 and inversely
proportional to noise intensities Nm in the corresponding degraded images,
m ¼ 1; . . . ;M. The empirical adjustment of parameters lm that approaches the
scheme (33) could be performed based on the use of the systems calibration data.
Before utilizing passive sensing systems, their calibration is performed by measuring
the systems’ signal-to-noise ratios (SNR)

G mð Þ ¼
ksðmÞ

0 k2
D E
knðmÞk2
D E ¼

kFðmÞv0 þ nðmÞk2
D E

� knðmÞk2
D E

knðmÞk2
D E ; m ¼ 1; . . . ;M; ð34Þ

where GðmÞ is the average SNR at the output of the mth imaging system measured by
some means [8,14] for the applied calibration input v0ðe:g: v0 ¼ v01Þ, and �h i denotes
the ensemble average. Viewed as approximation to the ratios, v0=Nm, measurements
(34) can be used to adjust the corresponding regularization parameters

p̂m ¼ G mð Þ
XM
j¼1

GðjÞ

 !�1

; ô ¼
XM
j¼1

GðjÞ

 !�1

; l̂m ¼ G mð Þ; m ¼ 1; . . . ;M;

ð35Þ
that approximate the statistical selection scheme (33).

3.4. Resolution-to-noise balance

Statistical scheme (33) and its calibration data-based approximation (35) provide
no availability to balance between the gained spatial resolution and noise
suppression in the resultant restored image. In practice, it is sometimes tempting
to permit higher noise level if we are interested in attaining the enhanced spatial
resolution. In that case, we have to select the regularization parameters in such a
fashion that the systematic error in the restored image is minimized (i.e. spatial
resolution is maximized) subject to the constraint that the noise error is bounded by
some prescribed admissible level. Using approximations (23) and (24), we further
represent the noise error measure (32) as follows:

rn o; pð Þ ¼ trace ~F
T
P~Fþ o=v0I

� �2
~F
T
PNP~F

! "

� N0 trace ~F
T
P~Fþ o=v0I

� ��2
~F
T
P2~F

! "
; ð36Þ

where approximation, N ¼N0I, was made for the case of prior unknown noise
intensities Nm by substituting those with the average intensity N0 ¼ 1=Mð Þ

PM
m¼1Nm.

The systematic error measure in the fused image (30) is now expressed by

rs o; pð Þ ¼ kvsk2
D E

� trace 1þ ln v0ð Þ2 ~F
T
P~Fþ o=v0I

� ��2
! "

: ð37Þ
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For a fixed p, the noise error measure rnðo; pÞ defined by Eq. (36) is a monotonic
decreasing function of parameter o, while the systematic error measure rsðo; pÞ
given by (37) is an increasing function of o. Hence, the resolution-to-noise balance

can be efficiently controlled by this regularization degree of freedom. We have to pre-

select the weight parameters p̂m ¼ G mð Þ PM
j¼1 G

ð jÞ
� ��1

; m ¼ 1; . . . ;M (e.g. using

empirical calibration-based scheme (35)), fix the noise in the fused image at some
admissible level d and choose o as a solution to the balance equation,

N0 trace ~F
T
P~Fþ o=v0I

� ��2
~F
T
P2~F

! "
¼ d: ð38Þ

For example, if resolution-to-noise balance factor d is selected as, d ¼
tracefR̂~ng � N0KM, then solution ô of the balance equation (38) adjusts the
regularization parameters

l̂m ¼ ô�1p̂m; m ¼ 1; . . . ;M; ð39Þ

to maximize spatial resolution in the fused image subject to the constraint that noise
does not exceed the average level that it exposes in the actually acquired degraded
images. The resultant measures of the noise and systematic errors are now balanced
at their values, rnðk̂Þ and rsðk̂Þ, defined by Eqs. (36) and (37), respectively, for the
estimated values (39) of the regularization parameters.

4. Neural network for image restoration with system fusion

4.1. Model of the multistate Hopfield-type NN

The multistate Hopfield-type NN is a massive interconnection of formal neurons
as basic processing units as depicted in Fig. 1. The states xk; k ¼ 1; . . . ;K of all K
neurons of the multistate NN may take values in a range from 0 (black level) to some
pre-assigned maximum value X (white level). These values are used to represent the
gray levels of the image in the process of restoration. The initial state of a neuron k is
denoted as x0k. Each neuron k is visited sequentially in discrete time. The feedback
loops involve the use of particular branches composed of unit-delay elements (in
Fig. 1(b) these are denoted by t). At each particular visit, a neuron k receives at its
ith input node the input signal aki ¼ xi that is just the current state of the ith neuron,
i ¼ 1; . . . ;K , and a bias input yk at its ðK þ 1Þst (bias) node. Thus, each neuron
receives the signals from all other neurons including itself and a bias input. The
outputs of all K neurons

zk ¼ sgn
XK
i¼1

Wkiaki þ yk

 !
¼ sgn

XK
i¼1

Wkixi þ yk

 !
; k; i ¼ 1; . . . ;K ð40Þ

compose the output vector, z¼ sgnðWxþ hÞ, where W is the K
K matrix of the
interconnection strengths (synaptic weights Wki) of the NN, and h is the K
1 bias
vector. The output vector z is used to update the state vector x ¼ ðx1 x2 . . . xKÞT of
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the network: x00¼ x0 þ Dx, where Dx ¼RðzÞ is a change of the state vector x that is
computed by applying some state update rule RðzÞ and the superscripts 0 and 00

correspond to the state values before and after network state updating, respectively.
The energy function [10] of the network is defined as

E ¼ � 1

2
xTWx� hTx ¼ � 1

2

XK
k¼1

XK
i¼1

Wkixkxi �
XK
k¼1

ykxk: ð41Þ

If the state update rule RðzÞ is properly designed, then the decrease of the energy
function (41) is guaranteed at each updating step, i.e. E004E0, until finally the energy
function E converges to its some stable minimal value Emin that is referred to as the
stationary point of the network. Thus, the operational features of the multistate NN
depend on: (1) the values assigned to the matrix of the interconnection strengths W
and bias vector h; (2) the employed state update rule RðzÞ.

Clearly, if the energy function of the NN represents the function of a mathematical
minimization problem over a parameter space, then the state of the NN would
represent the parameters and the stationary point of the network would represent a
minimum of the original minimization problem. Hence, utilizing the concept of the
Hopfield-type network, we may translate our image restoration problem with system
fusion to a relevant problem of minimization of the energy function of a NN.

In this study, we rely on the multistate Li et al.’s MENN proposed in [22] because
of its universal computational structure that allows generalization for solving the

Fig. 1. Multistate NN for imaging system fusion: (a) structure of kth neuron; (b) NN’s structure.
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mathematical minimization problems with augmented cost functions. The initial Li’s
MENN was designed to solve the image restoration problem for the case of only one
formation system, i.e. M ¼ 1. The matrix of interconnection strengths W and vector
of bias inputs h of the NN were selected to minimize the cost function

E vjkð Þ ¼ �H vð Þ þ 1
2 l1ku� Fvk2 þ 1

2 l2kDvk2;

where the linear convolution operator D was defined as a numerical approximation
of the Laplacian operator L and the regularization parameter l1 was adjusted to get
feasible solutions that satisfied the imposed fidelity measure [22].

The idea of computational implementation of the proposed aggregate fusion
method using a NN is based on the modification of the MENN algorithm without
complicating the NN’s computational structure of Fig. 1 independent on a number of
systems to be fused. To accomplish this we redefine the NN’s operation parameters
W, h in such a fashion that the new MENN algorithm integrates the model
parameters of all M systems that enables the network to perform the fusion. The
state update rule is also modified to control the trade-off between the computational
complexity and accuracy of finding the stationary point of the network.
Implementing the developed MENN algorithm, the values of the regularization
parameters may be chosen empirically or controlled applying the selection schemes
proposed in Section 3.

4.2. Fused image restoration with MENN

Reconsider now the cost function EðvjkÞ given by (14) as an energy function of the
multistate NN and specify the interconnection strengths Wki and bias inputs yk of
the network expressing those via the parameters of function EðvjkÞ. By comparing
Eqs. (14) and (41) we define

Wki ¼ �
XM
m¼1

lm
XK
j¼1

F
mð Þ
jk F

mð Þ
ji

" #
� lMþ1Pki; ð42Þ

yk ¼ �ln xk
XM
m¼1

lm
XK
j¼1

F
mð Þ
jk y

mð Þ
j

" #
; ð43Þ

where we redenoted xk ¼ vk, yk ¼ uk and ignored the constant term (15) that does
not involve v.

Having specified the parameters of the NN, we can apply the direct descent
method for minimization of its energy function [10]. Consider one single updating
step with particular neuron k. Let Dxk define a state change of neuron k, i.e. we may
express the state of neuron k after updating as x00k ¼ x0k þ Dxk. The energy function E
takes the change DE ¼ E00 � E0 due to neuron k updating. Using definition (41), this
energy change can be expressed as

DE ¼ �
XK
i¼1

Wkix
0
i

 !
Dxk � y00kx

00
k � y0kx

0
k

� �
� 1

2Wkk Dxkð Þ2: ð44Þ
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The second term on the right-hand side of Eq. (44) may be substantially simplified if
we assume that all xk41:

y00kx
00
k � y0kx

0
k ¼ y0kDxk þ y00k � y0k

� �
x00k

¼ y0kDxk þ ln 1� Dxk
x00k

# $
x00k � y0k � 1

� �
Dxk:

This enables us to approximate the energy change

DE � �
XK
i¼1

Wkix
0
i � y0k � 1

 !
Dxk � 1

2Wkk Dxkð Þ2

and redefine the output (40) of neuron k as follows:

zk ¼ sgn
XK
i¼1

Wkix
0
i þ y0k � 1

 !
; k ¼ 1; . . . ;K : ð45Þ

Now, to guarantee the non-positive values of DE, the following state update rule can
be applied:

Dxk ¼ R zkð Þ ¼
0 if zk ¼ 0;

D if zk40;

�D if zk50;

8><
>: ð46Þ

where D is the preassigned step-size parameter. If no changes of DE are examined
while approaching to the stationary point of the network, then the step-size
parameter D may be decreased, which enables one to monitor the updating process
as it progresses setting a compromise between the desired accuracy of finding the
NN’s stationary point and computational complexity. To satisfy the condition xk41
some constant v0 may be added to the gray level of every original image pixel and
after restoration the same constant should be deducted from the gray level of every
restored image pixel, hence, the selection of a particular value of v0 is not critical.
Thus, we revise the model of the degraded images that we employ from M different
image formation systems replacing the actually acquired images uðmÞ by the renewed
data vectors

y mð Þ ¼ F mð Þ vþ v01
� �

þ n mð Þ ¼ u mð Þ þ v0F mð Þ1; m ¼ 1; . . . ;M; ð47Þ
where 1=ð1 1 . . . 1ÞT2RK is the K
1 vector composed with ones. Consequently, the
restored image v̂ corresponds to the state vector x̂ of the NN in its stationary point
as, v̂ ¼ x̂� v01.

Here, we provide the iterative algorithm that implements the proposed method.
The steps of the algorithm are listed as follows.
Step 1: Make the necessary corrections (47) of the data vectors.
Step 2: Choose suitable values of the regularization parameters

lm;m ¼ 1; . . . ;M þ 1, empirically or applying the schemes developed in Section 3.
Step 3: Compute the weighted vector y ¼ ð1=

PM
m¼1 lmÞ

PM
m¼1 lmy

mð Þ and consider
it as the initial state vector x0 of the neurons; compute the synaptic weights (42) and
bias inputs (43) of the NN.
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Step 4: Sequentially visit all neurons to complete one iteration. Use the state
update rule (46) repeatedly until there are no changes in the energy function. After
completing each iteration, update the bias inputs (43).
Step 5: Check the energy function E. If the energy function decreases, return to

step 4 for the next iteration. If the energy does not change (DE is less than some
selected threshold), decrease the step-size parameter D 2 times and return to step 4
for the next iteration. Repeat step 5 until the step-size parameter takes some
prescribed minimal value Dmin or there are no changes in the energy function.
Step 6: Deduct the constant v0 from the gray level of every pixel of the stationary

state vector x̂ of the NN and compute the restored image v̂ ¼ x̂� v01.
When the optimization schemes for selection of the regularization parameters are

applied, the result of the restoration becomes a balanced trade-off between the
gained spatial resolution and noise suppression in the resultant fused image. Any
other measures of misfit are also possible [3,9,22]. In these cases, the second step of
the presented algorithm should be revised to perform the necessary adjustment of the
regularization parameters. Hence, different modifications of the proposed MENN
may also be developed to control its regularization degrees of freedom.

5. Simulation results

This section presents the results of simulations of the developed method carried
out in one dimension for the case of fusing the data provided by two different passive
radar systems operating in the same frequency waveband and scanning in one
direction along the same scene (e.g. two passive imaging radars displaced on one
platform or closely adjacent platforms). The systems’ PSFs were simulated as the
corresponding antennas receiving patterns. The first simulated system uses an
equispaced half-wavelength far apart K-element linear antenna array, which
performs the conventional linear beamforming [5] to scan electrically over the
scene. In simulations, it is sufficient to consider only the main beam and the nearest
sidelobes in the PSF, which levels exceed �20 dB because the total power of the
signals in all other sidelobes is negligibly small [8]. Thus, the PSF of the first system
(see Fig. 2(a)) had four considerable sidelobes, its width at half maximum was
8 pixels of 200-pixel image format and its full width was bounded to 30 pixels.

The second simulated system corresponds to the model of an ultra-low sidelobe
antenna with Taylor weighted aperture distribution [8] (see Fig. 2(b)). In that case,
less than 1% of the receiving signal power is in sidelobes (hence, in simulations their
impact may be ignored) while the decrease in the sidelobes level is accompanied with
the relevant widening of the main beam of the antenna pattern. Its width at half
maximum was 15 pixels and the full width was bounded to 30 pixels.

The original image was K ¼ 200 pixels in size and contained one extended object
of 115 pixels width and 5 point-type objects each of 4 pixels width displaced in the
image scene as shown in Fig. 3(a). Convoluting the original image with the
corresponding PSFs simulated the blurred images. The additive noise vectors were
modeled as white w2ðKÞ-distributed random vectors (chi-squared discrete Pearson
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Fig. 2. Simulated PSFs: (a) first system; (b) second system.

Fig. 3. Simulation results: (a) original simulated image; (b) MENN restoration with system fusion (SF)

applying optimally balanced data aggregation; (c) fused MENN restoration with empirically statistically

adjusted regularization parameters; (d) fused MENN restoration with evenly assigned weights; (e), (f)

degraded images formed by systems 1 and 2, respectively; (g), (h) RLS restoration of two degraded images

of (e) and (f), respectively; (k), (l) MENN restoration of two degraded images of (e) and (f), respectively,

without system fusion. In all the images, the horizontal axis corresponds to the 1-D image pixel number,

while the vertical axis represents the image brightness values.
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noise with K degrees of freedom [3]) as inherent for the passive radar listening
systems [5,6] and added to the blurred images. The average noise intensity was put
N1 ¼ 15 for the first system and N2 ¼ 7 for the second system, respectively, with the
maximum value of the brightness scale X ¼ 140. The lower noise level assumed for
the second system accounts to the model of the higher signal-to-noise ratio.

To demonstrate the performance of the proposed MENN, we compared it with
the Tikhonov’s iterative regularized least squares (RLS) restoration algorithm, which
does not employ the ME image model [11], and with the MENN without system
fusion [22] applied to each of two degraded images separately. We used the

Fig. 3. (continued ).
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conventional measure [19] of improvement in the signal-to-noise ratio (ISNR),

m ¼ 10 log10

PK
k¼1 uk � vkð Þ2PK
k¼1 v̂k � vkð Þ2

ð48Þ

as a quantitative evaluation of the restoration process. The better restoration process
is characterized with the higher ISNR, because the higher m, the closer is the restored
image v̂ to the original image v. To qualify the results of system fusion, the degraded
image acquired by the second system was chosen as the reference image, i.e. uð2Þ ¼ u,
when formula (48) was applied.

The simulation results are presented in Figs. 3(a)–(l). Fig. 3(a) shows the original
simulated image. Fig. 3(b) shows the restoration result obtained using the proposed
MENN algorithm with the balanced regularization parameters. Parameters p̂m were
adjusted applying empirical calibration-based scheme (35), and o was optimized as a
solution to the balance equation (38) for the preassigned noise factor d ¼ N2KM, in
which case the MENN algorithm maximized spatial resolution in the fused image
with respect to the constraint that noise should not exceed the level that it exposed in
the second degraded image. Fig. 3(c) represents the restored image obtained with the
same MENN algorithm but for the case of empirically selected l1, l2 according to
statistical scheme (33). Fig. 3(d) shows the result of fused MENN image restoration
using robust pre-selected even values of regularization parameters l1 ¼ l2 ¼ 1 (i.e.
no optimization of the regularization parameters was applied). The gray level of the
original image before restoration was increased by a constant, v0 ¼ 20. Figs. 3(e) and
(f ) show the degraded images at the outputs of the first and the second image
formation systems, respectively. Figs. 3(g) and (h) show the restoration results
obtained by applying the RLS iterative restoration algorithm [11] to the images of
Figs. 2(e) and (f ), respectively. Figs. 3(k) and (l) represent the restoration results of
the Li’s MENN method [22] applied independently to the degraded images of
Figs. 3(e) and (f ), respectively. In all these algorithms, the weight l3 of the
Tikhonov’s stabilizer (12) in the corresponding cost functions was assigned the same
value, l3 ¼ 10�2. The iteration process was terminated at the step-size parameter,
Dmin ¼ 0:5, with the initial value D ¼ 1.

Analyzing the presented simulation results, we may summarize the following. The
RLS method does not provide the qualitative restoration because it is basically a
linear inverse filtering technique that employs no specific a priori regularizing
information. The MENN without fusion exhibited the good restoration perfor-
mances for the both systems but the better performances were obtained applying the
system fusion: the resolution was improved, all objects were clearly distinguished,
and the ringing effect was substantially decreased. In Table 1 we present the values of
the ISNR for the iterative RLS algorithm and two neural networks: the first one that
employs the Li’s MENN algorithm applied separately to the data acquired by the
systems, and the second one that implements the developed fusion algorithm with
different options of a choice of the regularization parameters, along with the
comparison of their convergence rates. The reconstructions proved to be sensitive to
the choice of the regularization parameters. For the above simulations reported in
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Table 1, the higher value of ISNR was obtained from the proposed fusion algorithm,
in which the resolution-to-noise balance was optimized using the method developed
in Section 3. The number of iterations characterizes the computational complexity of
the corresponding algorithms. As the use of Li et al.’s modification of a Hopfield-
type NN to solve an optimization problem is basically a direct descent approach [22],
hence all presented MENN algorithms have the same order of computational
complexity comparable with that of the conventional direct descent iterative
schemes.

6. Conclusion

In this paper we present a Hopfield-type multistate MENN for image restoration
with system fusion as required for remote sensing imagery although it may also be
applied to other fields. The developed MENN algorithm utilizes the unified
architecture of the Li’s NN, but the interconnection strengths and bias inputs are
redefined in such a way that enables the NN to perform solution of an aggregate
inverse problem of image restoration from the degraded images received of different
systems. The new MENN algorithm contains also some design parameters viewed as
the regularization degrees of freedom, which with an adequate selection can improve
the overall fusion performance. The method was proposed to perform balanced
aggregation of the fusing systems’ data to realize the image reconstruction with
improved spatial resolution and controllable noise level. The improvement was
achieved due to the optimal integration of the use of a priori ME model information,
calibration data and redundancy in the measurements provided by different systems.
The developed MENN algorithm was tested successfully through computer
simulation of the restoration of degraded images obtained with two different passive
radar sensing systems operating in a noisy environment. The new method exhibited
better overall resolution performances than traditional high-resolution regularized
least squares inversion technique and existing neural-network-based image

Table 1

ISNR values and number of iterations for three restoration methods: RLS, Li’s MENN without system

fusion and the proposed method for three different options of a choice of the regularization parameters.

Results are presented for two degraded images shown in Figs. 3(e) and (f), respectively

Image restoration using different methods ISNR Number of

iterations

RLS method: system 1 2.28 30

RLS method: system 2 2.02 30

Li’s MENN without system fusion: system 1 6.91 44

Li’s MENN without system fusion: system 2 6.64 40

MENN method with system fusion (even k) 8.11 62

MENN method with system fusion (empirically adjusted k) 9.36 66

MENN method with system fusion (balanced k) 10.19 66
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restoration methods that do not accomplish the system fusion or perform
conventional decentralized fusion.
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