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This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation
of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies
between the control points on different active contours. These contours have been generated through an alignment process of
reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation
techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers
and itis also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance
images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by
experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation
method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy
and stability.

1. Introduction be trapped into local minima problem and it is also highly
sensitive to initialization of the control points because they
require being close to the target object; otherwise failure of
convergence will occur.

Since ACM was introduced by [10], many researchers
have suggested adapting different techniques to work
together with ACM in order to overcome its shortcomings.
The suggested improvements of the classical ACM including
the introduction of prior knowledge such as active shape
models [11], shape prior applied on human cerebellum
[12], ACM based on level set method [13], population-
based methods such as genetic algorithms [14], differential

Automatic image segmentation is an important and chal-
lenging problem in computer vision and medical image
analysis. The objective of image segmentation is to separate
objects of interest from a given image based on different
attributes such as shape, color, intensity, or texture. In recent
years, several techniques have been reported for this purpose
including graph cut [1, 2], improved watershed transform [3],
suppressed fuzzy c-means [4], supervised fuzzy clustering [5],
multithreshold based on differential evolution [6], and active
contour model (ACM), which has been applied in different
areas such as intravascular ultrasound images [7], automatic

urban buildings [8], and natural images [9], to name a few.
The Active Contour Model is an energy-minimizing
spline curve composed of discrete control points called
snaxels. The curve is attracted towards features as edges of a
target object through the evaluation of internal and external
forces. The classical implementation of ACM is prone to

evolution [15], and particle swarm optimization [16]. The
performance of these population-based methods working
together with ACM is robust in local minima problem and
according to the tests, these methods present a more stable
and eflicient image segmentation within an appropriate
computational time.



The population-based methods are an effective way
to solve discrete optimization problems. Recently, a new
approach known as Estimation of Distribution Algorithms
(EDAs) from the family of Evolutionary Algorithms has
begun to attract more attention for solving global optimiza-
tion problems with a fast convergence. EDAs are stochas-
tic methods that incorporate statistical knowledge to solve
optimization problems [17]. These algorithms consist of a
set of potential solutions called population, where each
potential solution is referred to as individual, and in general,
EDAs work with truncation selection and binary encoding
to explore the search space. In the EDAs strategy a subset
of individuals is selected, and a probabilistic model of
these individuals is constructed. The new individuals will be
generated from this model, and the algorithm evolves until a
stopping criterion is satisfied. Since EDAs are highly efficient
in solving optimization problems, they have been successfully
applied in a wide range of applications such as the side
chain placement problem [18], dynamic optimization [19],
cancer chemotherapy optimization [20], and multiobjective
knapsack problem [21].

In this paper, we introduce a novel automatic image
segmentation method based on the theory of Active Con-
tour Model and Estimation of Distribution Algorithms. The
proposed method uses the Univariate Marginal Distribution
Algorithm (UMDA) to infer statistical dependencies between
snaxels belonging to a population, in order to increase the
exploration and exploitation capabilities regarding the classi-
cal Active Contour Model. To establish the initial positioning
of the proposed method, a shape prior and the alignment
process proposed in [22] to construct a target object template
are used. This template is discretized and it is also scaled to
different size in order to generate the initial populations of
individuals and assuming that the target object is confined
within them. This proposed method addresses the problem
of segmenting the hollow core in microscopic images of
photonic crystal fibers and the human heart and ventricular
areas from Computed Tomography and Magnetic Resonance
images, respectively.

The remainder of this paper is organized as follows. In
Section 2, the fundamentals of Active Contour Model and
Univariate Marginal Distribution Algorithm are introduced.
In Section 3, the proposed image segmentation method is
presented, along with a set of similarity metrics to evaluate
its performance. The experimental results are discussed in
Section 4, and conclusions are given in Section 5.

2. Background

In this section, the fundamentals of the Active Contour
Model and the Univariate Marginal Distribution Algorithm
are described in detail.

2.1. Active Contour Models. The traditional Active Contour
Model, also known as snake, is a parametric curve that can
move within a spatial image domain where it was defined [10].
The curve is defined by p(s,t) = (x(s,t), y(s,1)),s € [0,1],
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where it evolves through time t to minimize the total energy
function given by the following:

1
P = || B (P(50) + Fo (p 5 )]ds. ()

This energy function is composed of two different ener-
gies: the external energy E,,, defined by the particular gradi-
ent features of the image, and the internal energy E; ., which
is used to control the shape modification of the curve and
to maintain the search within the spatial image domain. On
the other hand, the discrete computational implementation
of the classical ACM consists of a set of n discrete points
{p; |i=1,2,...,n}, and the local energy function is given by
(2), which is iteratively evaluated in order to minimize, for the
actual discrete point, the k; index in the W, searching window
using (3):

E;; = Eip + Eeys (2)

n
Esnake = ZEi,k,-’ ki = arg mjm (Ei,j) ’ ] € ‘A/l (3)
i=1

Since the classical ACM has the drawbacks of initial-
ization and local minima problem, Chan and Vese [13]
incorporated a shape prior constraint within the traditional
ACM. This method is defined by using the following:

E; = w,E| + w,E, + wsE;. (4)

E represents the total energy function composed of the
energies E,, E,, and E; with their weighting factors w,, w,,
and w;, where E, represents the active contour or snake.
The energy E, represents the shape energy defined by the
difference between the active contour and the shape template
and it is expressed as follows:

E, - jQ (H($) - Hpy(BY)) dxdy, 5)

where Q) is the image domain, H() is the Heaviside function,
¢ is a signed distance function, ¢ the deformed template,
and B the transformation matrix consisting of translation
[t ty]T, scaling [s], and rotation [0] parameters, as follows:

10 ¢, s 00 cos@ —sinf 0

Bl =01 t,|x|0 s 0|x|sin@ cos® 0], ©6)
001 001 0 0 1
M(a,b) H(s) R(6)

wheret, and t, are the translation parameters in the horizon-
tal and vertical axes, respectively. (s) is the scaling factor, and
0 represents the rotation angle parameter. Finally, the third
energy E, is the image-based force with an image intensity I
and the gradient operator V computed as follows:

E, = I (VH (¢) - VI)dx dy. 7)
Q

These three energies are iteratively evaluated, until the
difference between the previous and current segmented
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area becomes stable. Although the Chan and Vese method
is suitable to solve the initialization disadvantage of the
classical ACM, this method is prone to be trapped into local
minima. An alternative to overcome this drawback is to
use population-based methods such as Estimation of Dis-
tribution Algorithms, which are described in the following
Section 2.2.

2.2. Overview of Estimation of Distribution Algorithms
(EDAs). Estimation of Distribution Algorithms [23-25]
are population-based stochastic algorithms that incorpo-
rate statistical information to solve optimization problems.
Although EDAs are based on the principles of evolutionary
computation since they use a population of individuals,
binary encoding, and selection operators, EDAs replace
the application of the crossover and mutation operators by
building probabilistic models of promising solutions based
on global statistical information. The probabilistic model
that EDAs build in each generation is designed to infer
statistical dependencies between the variables in order to
generate new solutions. In our work, we will focus on the
Univariate Marginal Distribution Algorithm, which is one
of EDAs that works perfectly for linear problems and for
applications without many significant dependencies [26, 27].
UMDA works on binary strings and uses a probability vector
P=(ppPr--> pn)T to construct the probabilistic model and
then create new solutions for each variable independently,
where p; represents the probability of obtaining a 1 (binary
encoding) in position i. The main idea behind UMDA is
that it approximates the actual probability distribution of the
individuals in P, as the product of the univariate frequencies
calculated from the selected population and assuming that
all variables are independent [28]. In general, UMDA iterates
the steps of selection, estimation of probability distribution
and the creation of new individuals. In the first step, after the
individuals in the search space Q) have been sorted according
to fitness, the selection probability s is calculated by using the
following proportional selection:

P (x) f (%)
2zea P (%) f (%)

In the second step a joint probability P is computed
through the following:

Px) =[]P(X=x), )
i=1

P* (x) = (8)

where x = (x,,X,,...,%,) is the binary value of the ith bit
in the binary string (chromosome) and X; represents the ith
component of the random vector X. The last step of UMDA
generates new individuals from the estimated distribution
which will be evaluated according to the fitness function
in the next generation. These three steps are iteratively
performed until the termination criteria are satisfied.

According to the above description, the UMDA algorithm
can be implemented through the following.

(1) Establish ¢ = 0. Generate n individuals randomly.

(2) Select a subpopulation S of m < n individuals

according to a selection method.

(3) Compute the univariate marginal probabilities
p;i(x;,t) of S.

(4) Generate n new individuals according to p(x,t+1) =
[T~ 97 (xio1).
(5) Stop if the convergence criterion is satisfied (e.g.,

stability or number of generations); otherwise, repeat
steps (2)-(5).

3. Proposed Image Segmentation Method

The proposed image segmentation method based on Active
Contour Model and the Univariate Marginal Distribution
Algorithm is described in Section 3.1. Additionally, to assess
the performance of the proposed method, the Jaccard and
Dice indices are explained in Section 3.2.

3.1. Active Contour Model with Univariate Marginal Distribu-
tion. Due to the two main shortcomings of the traditional
ACM discussed above, the Univariate Marginal Distribution
Algorithm has been adopted to solve the local minima draw-
back by building probabilistic models, and the initialization
disadvantage is addressed by using scaled templates obtained
from an alignment process. Since the methodology of the
proposed method makes it possible to apply the UMDA strat-
egy directly in the segmentation task, the advantages of low
computational time, efficiency, and robustness are inherently
acquired. The procedure of the proposed method is illustrated
in Figure 1, and it is described below. This procedure is
similar to [15] in the final segmentation step, while the main
difference is the introduction of shape templates avoiding
the user interaction via seed point and also the use of an
Euclidean distance parameter between individuals instead of
constrained polar sections.

The first step of the proposed method consists of the
construction of a shape template through the alignment of
a training set of selected reference images, which leads to
differences in position, direction, and scale. The alignment
process is performed using the technique developed in [22],

by estimating the parameters [a, b, s,0]" as follows:

x
=M (a,b)xH(s)xR@O)x |y, (10)
1

— ) Rl

where M(a,b) is the x (horizontal) and y (vertical) trans-
lation matrix, H(s) is the scale matrix, and R(0) is the
rotation matrix. The product of the three matrices maps the
coordinates (x, y) € R? to coordinates (%, y) € R?, which is
used to apply the gradient descent method iteratively in order
to minimize the following energy function:

by o5 3 [Ty
e == ] ], (fi + ff)sz

where Q is the image domain and T is the transformed image.
The final process of this step involves obtaining the final
aligned template by superimposing all transformed images
and then acquires it through the maximum shape boundary.

, (n
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FIGURE 1: Process of the proposed image segmentation method.
In the second step of the method, a preprocessing stageis ~ experimentally tuned to ¢ = 1.3, T} = 10.0, and T, =

required, where we first remove the noise from the testimage  30.0, in order to preserve the real edges in the test image
by using a 2D median filter (3 x 3 window size), followed  since these can affect the segmentation result. The final step
by an edge detection between the background and the target ~ in this preprocessing, is to compute the Euclidean distance
object through applying the Canny edge detector, which is =~ map (EDM) according to [29]. The EDM is used as potential
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surface to perform the optimization process, because it
assigns high potential values to the image pixels located
far from the target object, and low potential values (ideally
zero) to pixels located close to the object. The automatic
initialization procedure on the resulting EDM is performed
by using the maximum mutual information between the
template and the current test image. Subsequently, the n
initial active contours are created by scaling the final shape
template acquired from the previous alignment process. The
number of scaled templates has to be considered assuming
that the target object is confined within them. After the n
contours are defined, these contours must be discretized by a
number m of equidistant control points, this parameter has to
be considered to adapt and smooth the segmentation result to
the shape of the target object. The control points are assigned
as individuals to conform a number m of populations P,
where each population is composed of individuals of different
contours with the same position label. The third step of the
proposed method involves the numerical optimization and
the image segmentation result. The numerical optimization
is performed by using 8-bit representation (binary encoding)
instead of the intensity of the EDM (real encoding in the
range [0,255]) which is used as fitness function in the
optimization process. The UMDA strategy is applied for each
population P, separately in order to be placed on the nearest
edge solution. All the individuals are iteratively evaluated
according to the fitness function and the best individual
of each population is updated only if a best solution is
found considering a maximum distance D, ,, between best
individuals. Finally, when the optimization process for each
population P, is finished, the resulting segmented object is
acquired by connecting the best individual of each population
to each other.

The procedure of the proposed image segmentation
method is described as follows.

(1) Align reference shapes according to [22] and obtain
final template after alignment.

(2) Perform maximum mutual information to position-
ing the template.

(3) Initialize number of active contours n and control
points m.

(4) Initialize the UMDA parameters: number of genera-
tions, number of binary bits, and maximum distance
D

(5) Generate m populations assigning the control points
as individuals.

max*

(6) For each population P,

(a) apply restriction of the search space to ignore
improper individuals;

(b) evaluate each individual in fitness function
derived from the Euclidean distance map;

(c) select a subpopulation of individuals according
to selection method;

(d) compute the probabilistic model (univariate
marginal distribution);

(e) generate n new individuals based on the proba-
bilistic model;

(f) stop if the convergence criterion is satisfied (e.g.,
stability or number of generations); otherwise
go to step (a).

3.2. Evaluation Metrics. To evaluate the performance of the
proposed method on medical images, Jaccard and Dice
indices have been adopted to analyze the segmentation results
between the regions obtained by computational methods and
the regions outlined by experts.

The Jaccard index J(A, B) and Dice index D(A, B) are
similarity measures used for binary variables and defined
in the range [0,1], which are computed using (12) and
(13), respectively. In our tests, A represents the reference
segmented object outlined by experts and B represents the
automatic segmented object by computational methods [12]:

ANB
](A) B) = m’ (12)
_2(AnB)
D(A,B) = i B (13)

In both indices, when the regions A and B are completely
different the obtained result is 0 and is 1 when these two
regions are completely superimposed.

In Section 4, the segmentation results obtained from the
proposed method on microscopic images of photonic crystal
fibers and medical images are presented and analyzed by the
evaluation metrics.

4. Experimental Results

In this section, the proposed method is applied firstly, on the
segmentation of the hollow core in microscopic images of
photonic crystal fibers, and secondly, to segment the human
heart and ventricular areas from computed tomography and
magnetic resonance images. The computational implementa-
tions presented in this section are performed using the GNU
Compiler Collection (C++) version 4.4.5 running on Debian
GNU/Linux 6.0, Intel Core i3 with 2.13GHz and 4 GB of
memory.

Figure 2 introduces an image of size 512 x 512 pixels
consisting of a microscopic image of a hollow core photonic
crystal fiber, where the aim is to separate the hollow core
from the image. In Figure 2(a) the original test image is
presented and its resulting Euclidean distance map is illus-
trated in Figure 2(b). On the other hand, in Figure 2(c) the
segmentation result by using the classical ACM implemen-
tation is presented, in which the noise sensitivity and fitting
problem are shown. The ACM parameters were statistically
determined as 35 control points, « = 0.01, 8 = 0.9, and
y = 0.05 with an executing time of 0.131s. In Figure 2(d)
the segmentation result obtained with the interactive Tseng
method is presented. The parameters of this method were set
as 35 control points, window size as 30 x 30 pixels according
to [16], and 9 particles for each swarm, obtaining an executing
time of 0.160 s. Finally, in Figure 2(e) the segmented image by
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(d)

(e)

FIGURE 2: Hollow core photonic crystal fiber: (a) microscopic test image, (b) Euclidean distance map of test image, (c) segmentation result of
classical ACM, (d) segmentation result of interactive Tseng method, and (e) segmentation result of proposed method.

using the proposed method shows an appropriate hollow core
segmentation avoiding the local minima problem and locates
the hollow core boundary accurately. In this simulation, the
parameters were set as generations = 15, D, = 25, number
of contours =10, and number of control points = 35, obtaining
an executing time of 0.177 s.

Figure 3 presents a microscopic image of size 512 x 512
pixels consisting of another kind of hollow core photonic
crystal fiber. In Figures 3(a) and 3(b) the original test image
and its resulting Euclidean distance map are illustrated. In
Figure 3(c) the segmentation result obtained through the
traditional ACM is shown, where due to the noise it cannot
adjust to the hollow core boundary accurately. The ACM
parameters were experimentally determined as 42 control
points, « = 0.013, § = 0.845, and y = 0.195, with an
executing time of 0.149s. In Figure 3(d) the segmentation
result by using the interactive Tseng method is presented. The
parameters of this simulation were set as 42 control points,
window size as 30 x 30 pixels, and 9 particles for each swarm,
obtaining an executing time of 0.192 s. In addition, Figure 3(e)
shows the segmentation result obtained from the proposed
method, where it can adjust to the hollow core boundary
accurately. The parameters of this experiment were set as
generations = 15, D, .. = 20, number of contours = 10, and
number of control points = 42, with an executing time of
0.215s.

Figure 4 presents the segmentation results on a subset
of CT images containing the human heart, where the whole
dataset consists of 144 CT images of size 512 x 512 pixels
obtained from different patients. In Figure 4(a) the human
heart outlined by cardiologists is presented. Figure 4(b)
illustrates the segmentation results obtained through the
classical ACM, where the noise sensitivity and fitting problem
are clearly shown. The ACM parameters were determined
according to [16] as 45 control points, « = 0.017, § =
0.86, and y = 0.45 with an executing time of 0.161s.
Figure 4(c) illustrates the segmentation results obtained
with the interactive Tseng method. The parameters of this
simulation were set as 45 control points, window size as 30 x
30 pixels, and 9 particles for each swarm, given an average
executing time of 0.205 s per image. Finally, in Figure 4(d) the
segmentation results obtained by using the proposed method
show an appropriate human heart segmentation avoiding the
local minima problem. The parameters of this experiment are
set as generations = 15, D, = 15, number of contours = 9,
and number of control points = 45, with an executing time of
0.209s.

From the dataset of computed tomography images of the
human heart described above, in Table 1 the average of the
segmentation results obtained from the classical ACM, inter-
active Tseng method, and the proposed method is compared
with the manual delineations by experts. The comparative
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(c)

(d)

(e)

FIGURE 3: Hollow core photonic crystal fiber: (a) microscopic test image, (b) Euclidean distance map of test image, (c) segmentation result of
classical ACM, (d) segmentation result of interactive Tseng method, and (e) segmentation result of proposed method.

(d)

FIGURE 4: CT images (human heart segmentation): (a) regions outlined by experts, (b) results of classical ACM, (c) results of interactive Tseng

method, and (d) segmentation results of proposed method.

analysis reveals that the proposed method is promising for
the human heart segmentation on CT images.

In Figure 5 the segmentation results on a subset of mag-
netic resonance images containing the human ventricular
area are presented. The whole set of MR images consists
of 19 images with size 256 x 256 pixels. In Figure 5(a)
human ventricular areas outlined by experts are illustrated.
Figure 5(b) presents the segmentation results obtained by

the classical ACM, where the method fails to fit the human
ventricular area boundary. The ACM parameters were set as
25 control points, « = 0.013, f = 0.845, and y = 0.195,
given an average execution time of 0.104s per image. In
Figure 5(c) the segmentation results through the interactive
Tseng method are introduced. In this simulation, the param-
eters were tuned as 25 control points, window size as 30 x
30 pixels, and 15 particles for each swarm, with an average



Mathematical Problems in Engineering

FIGURE 5: MR images (ventricular area segmentation): (a) regions outlined by experts, (b) results of classical ACM, (c) results of interactive

Tseng method, and (d) segmentation results of proposed method.

TABLE 1: Average similarity measure with the Jaccard and Dice
indices among the regions segmented by the traditional ACM,
interactive Tseng method, our proposed method, and the regions
outlined by experts of the CT dataset.

. . Similarity measure
Comparative studies ty

Jaccard index (J) Dice index (D)
ACM versus experts 0.6981 0.8222
Tseng versus experts 0.7647 0.8666
Our method versus experts 0.8367 0.9111

TABLE 2: Average similarity measure with the Jaccard and Dice
indices among the ventricular areas segmented by the traditional
ACM, interactive Tseng method, our proposed method, and the
regions outlined by experts of the MR dataset.

. . Similarity measure
Comparative studies Y

Jaccard index (J)  Dice index (D)
ACM versus experts 0.6666 0.8000
Tseng versus experts 0.7857 0.8800
Our method versus experts 0.9230 0.9600

executing time of 0.143 s per image. Moreover, Figure 5(d)
shows the segmentation results of the proposed method,
where the segmented human ventricular area fit the true
boundary accurately. The parameters of this simulation were
set as generations = 15, D, = 12, number of contours = 8,
and number of control points = 25, with an average executing
time of 0.118 s.

According to the human ventricular area dataset of MR
images previously described, in Table 2 the average of the
segmentation results obtained by the traditional ACM, inter-
active Tseng method, and our proposed method is compared
with the regions outlined by experts. This similarity analysis
suggests that the proposed method is more robust in ven-
tricular area segmentation with respect to the comparative
computational methods based on the regions outlined by
experts.

The use of the Univariate Marginal Distribution Algo-
rithm in the proposed method provides robustness, accuracy
and stability in the segmentation problem. Although the
computational time of the optimization process is appro-
priate regarding the comparative computational methods,

the proposed image segmentation method improve the seg-
mentation results avoiding the local minima and sensitivity
of initialization disadvantages of the classical active contour
model.

5. Conclusions

In this paper, a novel image segmentation method based
on the theory of active contour models and estimation of
distribution algorithms has been proposed. This segmen-
tation method has introduced two important advantages
with respect to different interactive segmentation techniques:
firstly, the automatic initialization by using scaled shape
templates obtained from an alignment process, in order
to overcome the sensitivity to initial contour position and
secondly, the incorporation of statistical information of the
control points for addressing the local minima problem.
Moreover, this proposed method was applied to segment
the hollow core in microscopic images of photonic crystal
fibers and it was also used to segment the human heart and
ventricular areas from CT and MR images. The experimental
results demonstrated that the proposed method can lead
to more accuracy and efficiency than the traditional active
contour model and the interactive Tseng method. In addition,
the experimental results have also shown that the exploitation
and exploration capabilities of the proposed method, are
highly efficient for different applications according to the
evidence showed by the set of similarity measures within a
competitive computational time.
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