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icant economic performance advantages for a network thro
We report a new theoretical approach—the spectral per- improved capacity, reliability, and transparency. An extenc
turbations method—which offers opportunities to analyze list of publications on this topic is presented in [1-3].
the evolution of the femtosecond soliton parameters in fiber The second research line related to EDFAs is in femtosec
amplifiers with inhomogeneously and homogeneously broad- laser systems, where they play different roles either as ac
ened lines. We show that the physical mechanism of the am- elements in lasers or as external elements for further arr
plification line broadening does not affect significantly the fication and time compression of emitted laser pulses [4,
output soliton parameters provided that the saturation effect The application of EDFAs with IBL opens the possibility ¢
is negligible. Analytical results are supported by computer new complementary implementations, for example, the sin
simulations. ©1996 Academic Press, Inc. taneous generation and amplification of solitons with differe
carrier frequencies. This activity is very promising for a tin
domain spectroscopy of ultrafast phenomena.
1. INTRODUCTION The mathematical description of the soliton pulse ampilifi
tion process in the range of hundreds of femtosecond duratic
In recent years great advantages of on-line amplification wiflell developed for amplifiers with homogeneously broader
the help of erbium-doped fiber amplifiers (EDFAs) in a hightine (HBL) [6-8]; however, it is not quite clear for soliton-like

speed fiber communication lines have been persuasively demgiitses in a fiber amplifier with a significant inhomogenea
strated. In theoretical and experimental research on EDFAS itismponent.

possible to detect at least two directions: the main one is relatedn this paper we propose a new theoretical approach,
to the implementation of EDFAs as on-line amplifiers in all Opspectral perturbation method, which gives us the opportur
tical fiber communication lines to achieve multi-gigabit per sego analyze the amplification dynamics of femtosecond solitc
ond pulse train propagation for several thousands of kilometeifsa fiber amplifier with inhomogeneously broadened gain it
Experiments show that EDFAs allow practically error free trangesults of computer simulation based on direct numerical
mission. The use of EDFA with inhomogeneously broadengggration of the nonlinear Schrodinger equation coupled w

line (IBL) yields the amplification of frequency multiplexed sig-corresponding equations for nonlinear polarization are also |
nals. Pulse trains with different carrier frequencies can be almeghted.

independently amplified in EDFAs with IBL because different
signals are in resonance with different groups of active ions. The 2. THE MATHEMATICAL MODEL
wavelength division multiplexing techniques could offer signif-
The mathematical description of the ultrashort pulse am
fication in an active fiber medium is based on the nonlin
* FAX (52)-22-33 24 03. E-mail: emarti@fcfm.buap.mx. Schradinger equation for the dimensionless complex amplit
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of the pulse envelopg(z, 1) (see e.g. [6]): the value ofAvy, varies within the interval 0.54-1.5 THz (18—
50 cnm 1) [3]. The parameten = (wg—w12) 1o iS the normalized
soliton carrier frequency detuning from the resonance transitio
frequencyws.

. . , . . . In a spectral domain Eq. (3) describes an amplification line
In this equation the first term on the right-hand side describ, h the FI)_orentzian conto&r'( ) P

the pulse dispersion spreading, the second term describes the

electronic nonlinearity (Kerr effect), the third term describes the q(f)

Raman contribution to the nonlinear polarization, and the last P(Q) = 1—iva(Q—A)
1ya($2 —A)

term describes the active Erions contribution (the gain term).

The running timer = (t — Z/u) is normalized to the input pulse For Al,O3:SiO, core optical fibers the line broadening is mainly

durationzo; u is the group velocity. The distaneés normalized homogeneous but for Ge%iO, core fibers inhomogeneous

to the dispersion lengthy = Z/|Kz|, withk, = 3%k/dw?, where broadening dominates [3]. In the latter case the spectrum of tt

k(w) is the mode propagation constant. resonant polarization can be expressed as the average of Eq.

The complex amplitudg is expressed in the units of the oneover the inhomogeneous line conta(rA):
soliton pulse amplitude with the duratiag

99 _ 19°q

1
2979 1 _ Bygl? iz
i =532 TA-PlaPa+pQa+isGP. (@)

4

e A
P(sz)=q(sz>f - 9(2) ®)

109] = \/8r kel (zZkoftzcno), —i7a(2 - 4)
Notice that Eq. (5) represents a convolution of the Lorentzial

wheref, = 3.2 x 10716 cn?/W is the nonlinear coefficien . i o )
wherenz = 3.2 x 10~ cm'/W is the nonlinear coefficientlo o'\ iy the spectral distribution of the active ions. In the time
is the refractive index. The parameigr~ 0.2 determines the . o )

omain the polarization complex amplitud®z) can be ob-

Raman contribution to the nonlinear refractive index. The arﬁéined as the inverse Fourier transformation of Eq. (5):
plification parameteG = L4/L 5, whereL , is the amplification q. ()

length [6]. 0o
The dynamics of the molecular oscillations induced by ultra- P(1) = 1 g(A)q(2) exp(—i Q1) dAdQ. (6
short pulses is governed by the equation for the real amplitude T 2n 1—iya(2—A) ’
Q: o
92 0 For computer simulation we used the Gaussian line shape
“23_(3 + 2822 + Q= a2 2 P g
T aT )
Herep = (10Qr)7%, 8 = (TRQR)L, whereQg is the Ra- g(A) = exp<__>, %
man resonant frequency, aﬁﬁ = 1/(w Avg) is corresponding V2ro 202

characteristic timeAvg is the Raman line bandwidth. For silica

glass fiber typical values of these parametersase~ 83 THz whereo is the semiwidth of the IBL,; it is related to the charac-
Avg ~ 7.5 THz, T, ~ 50 fs. The amplitude is expressed in t€fistic timeT;' by the formulas: = (v2In2T;)~". A typical
the unitsQ,, = Xég|Qs|2/4M Q2, with x5, = 9x/0Q, wherey is value of the inhomogeneous width is of the order of 50-tm

the electronic polarizability of the molecule which depends dil- ) o
Q parametrically and is the effective molecule mass. Finally we highlight that the effect of IBL can be remarkable

Considering the process of amplification of the femtosecollythe amplification of soliton puIse_trains with a high repetition
solitonitis necessary to take into account that the one-soliton &fgauency. In this case the saturation effect plays an importar
ergy density(~ 104 J/cn?) is several orders lower than the sat/©!€ and a spectral hole burning may be essential.
uration energy density of the resonant transitionlQ J/cn?),
so the variation of the laser transition population is negligible. In
the case of homogeneous broadening we can write the following
equation for the ion polarization complex amplitude:

3. SPECTRAL PERTURBATIONS OF
OPTICAL SOLITON

It is well known that the unperturbed Schrodinger equatior

9P _ (Eq. () in the cas@ = 0, G = 0) has the one-soliton solution
Yag -+ (I+iyaA)P =q. (3  which can be written as
The complex amplitudd® has been normalized to the value qs(z, ) = k sech[k(t— 1s) + Qsz] expi ®(z, 7)], )]

Pn = d2Nol|a|?/h, whered is the dipole moment of the reso-
nant transition,Np is the density of the poupulation inversion _ 2 2
created by the pumpa = To/1g is the normalized dipole decay ®(2,7) = Qs(r —75) — (7 = 2)A2 + ¢,

time which is related to the width of the homogeneous line wherex is the form factor determining the soliton amplitude
the formulaT, = 1/(z Aw,). For different doping componentand its duration2s is the normalized central frequenay, is
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the time coordinate of the soliton centeg,is the initial phase. So, the form factor variatiofk is proportional to the overlap in-
In the case of the perturbed Schrodinger equation the solitiegral of the soliton spectralamplitudg2) = (1/2)sech[z (-
parameters should be treated as functions of evolution variaklg)/2«] with the spectral amplitude of perturbatiéq(2). The
Z Kk =k(2), Qs = Q2(2), ts = 15(2), Ps = ¢s(2). soliton frequency variatiodQ2g is proportional to the first mo-
Raman contribution to the nonlinear polarizatier Qqusu- ment of the same overlap integral about the p@int Q.

ally acts as a small perturbation and it does not change the solitoffaking into account Egs. (5) and (10) we express the real |
form factor §« R = 0 at least in the frame of the first order apof the spectral perturbation as

proximation) but causes monotonicamed self-frequency shift
which strongly depends on the form factor [9] g(A)

1 o0
RBq(R)] = 5Gdz q(Q)/

8
Q8 = —1—50K4dZ, 9

Using Eq. (16) and Egs. (14) and (15) one can easily calcu
variations of the soliton parameters by numerical integrati
where the parameter = 281y but some important particular cases can be treated analytic
If the amplification paramete® = Lq/L, satisfies the in- For example, if inhomogeneous broadening dominates over
equalityG « 1, this means that the soliton energy increment giogeneous broadening th& « T, and the pulse is relatively
the distance of one dispersion length is relatively small, and tgortry « T, (y. >> 1), then it is possible to approximate th
last term in Eq. (1) can also be treated as perturbing one. SyGentz factor in Eq. (16) by Dirag-function:
a situation is typical only for femtosecond solitons. Then the

complex amplitude variatiofq resulting from passing a small 1

T
distancedz can be written as T+ 2@ — A2 ~ Z(Q —A). (7)
8q(z, 1) = %G P(z, 7)dz (10) The resulting spectral perturbation is written as
b
whereP(z, 7) is governed by Eq. (5) assuming= gs(z, 7). R[q(2)] ~ ngZ G(2)9(Q). (18)
a

To calculate appropriate variations of the soliton paraméiers

Qs one can use the known integral relations in a time domaithens, ands< can be determined from Egs. (14) and (15)
[10]:

2 o) Q-0
S , Sk = ”—Gdz/ sech [u] 9@ de, (19
Sk = K/ sech(k)R[exp(+Q2s1)8q(7)] dr, (11) 4y, . 2«
e b g
5 = K/ sech(crtanh(ct)3[exp(4 Qs7)8q(1)] dr. 5% = 5 -Gdz
But in the problem under consideration relations betwé&en . oo 2 2k 9(2) 2. (20)
8Qs, andéq are more conveniently expressed in a spectral do- . _ . _
main. Substituting the inverse Fourier transforndgfr), The form-factor incremertix is proportional to the overlap in-
tegral of the soliton spectral intensity () |2 with the amplifi-
o0 ) cation line spectral profilg(€2). The soliton frequency variatior
8q(7) = /_Oo 80 (£2) expli 27) de2, 13) 8% is proportional to the first moment of the integral mention
above.
into Egs. (11) and (12) and evaluating interior integrals aver When considering homogeneously broadened line we can
we obtain Egs. (4), (10), and (12) and obtain that
°° (2 — Q)] b4 o (2 — Q) 1
Sk =m /_oo sech[T} NR[6q(2)]d, (14) Sk = ZGdZ/,OO secﬁ[ o } 1+ 297 d@, (21)
® (- Q) 1 © (- Q) (2 — Q)
0Qs = 2 _— = = i i
s f_w[ > } 82 2Gdz/m[ 5 }secﬁ[ 5 }
T(Q—-Q9)7 . 1



146 MARTI-PANAMENO ET AL.

Asinthe previous case (Egs. (19) and (20)) the soliton parameter 4. NUMERICAL SIMULATION

variations may be determined as appropriate overlap integrals.

This means that in the frame of the first-order perturbation the-An analytical description which was presented in the previou:

ory, amplification of the femtosecond soliton basically does ngection is valid only for adiabatic (slow apamplification of the

depend onthe broadening mechanism butomy onthe parame%}g-sonton pulse. In our numerical experiments transformatiol

and on the shape of the amplification line. of the pulse shape and its spectrum was analyzed by integratil
Let us return to the inhomogeneously broadened line and c&#s. (1), (2), and (6) along the active fiber.

sider the physically relevant solutions which may be obtained asThe split-step algorithm was used for numerical integratior

limiting cases of Egs. (19) and (20). For a narrow band solitéff the nonlinear Schrodinger equation. It allows us to calcu

(k/to < 1/T;) one can use the approximations late the complex amplitude on eachz step as a result of the
successive application of operators describing dispersion puls

(9 — Q) < spreading, the self-phase modulation, amplification and Rams
sech [T} ~ ;5(9 — ), (23)  self-frequency shift. The spectral approach was used to calct
late the dispersion spreading. Integration of the equations fc
molecular oscillations and active ion polarization was also ac
complished by the spectral method based on the fast Fouri

- Qs seck [”(Q — QS)] transform algorithm. For calculation of the active ion polariza-
K 2 tion the integral in Eq. (6) was approximated by the sum of
2In2 Lorentzian lines (Eq. (4)) with the weight factors corresponding

~ [8(Q2s +1/2) = 32 —xcl2)], - (24) 5 amplification line contouy(£2).

In numerical experiments we usually take a pulse of the forn
and express the soliton parameters variations in the explicit form

i q(0, 7) = sech(t)exp(i Q07) (29)
Sk = —kQ(Q)Gdz (25)
Ya as the initial condition, whergq is the normalized byo‘l de-
tuning between the pulse initial carrier frequency and the gail
7In2 [ ag peak frequency.
8Qs = 2 (3—9>Q kGdz (26) To visualize dynamics of the femtosecond soliton amplifica-

tion we present the phenomenological picture of such a proces
Equation (25) predicts exponential growth of the form faator Figure 1a shows the evolution of the pulse shape during non:
with the distance. Equation (26) describes pulling of the pulséliabatic amplification. Notice that the growth of the soliton am-
spectrum toward the gain peak or spectral self-trapping. TREtiude results in decreasing of its duration and consequent!
pulling strength is proportional to the slope of the amplificatioftimulates the red self-frequency shift (see also Eq. (9)). In
line contourdg/d<2 at the point2 = . creasing of the group delay due to the self-frequency shift i

In the opposite case of a narrow amplification line (for exanfiuite obvious in a time domain. One can also see that a ne
ple Gaussian line Eq. (7) in the limit — 0) or a broadband Pulse appears at the second half of the propagation distance.
soliton (/7o > 1/T,") we haveg(2) ~ §(2) and Egs. (19) and The pulse spectrum evolution can help us to understand tf

(20) reduce to physics of the process. In Fig. 1b the spectrum of the ampli
fied soliton is shown for different. It is clear that the main

72 Q% soliton component of the spectrum broadens, shifts to the lowe

Sk = v sech [ " } Gd (27)  frequency region, and leaves the contour of the amplificatiol

line almost completely at the end of propagation distance. Th

amplification process stops and the soliton form factor reache

70 its stationary value but the carrier frequncy continues to shif
[ s] Gdz

(28) into the red spectral region. One can also observe a new spect

cluster appearing under the amplification line. In a time domait
The first of these equations predicts rather slow linear growititorresponds to the new pulse. Notice that the same phenome
of the broadband soliton form facterwith the distance. The are observed during amplification in a fiber with homogeneousl
second one describes trapping of the pulse spectrum underhlihgadened line [6] provided that saturation is negligible. We hav
center(Q2; = 0) of a narrow amplification line. It is important to used the inverse scattering transform method [10] for analysi
note that the restoring “force” at the right-hand side of Eq. (2@f the complicated wave packets obtained as the result of nt
has the maximum value at the pofRt ~ «/2; it vanishes at the merical integration (see for example Fig. 1a). It gives possibility
center of the amplification lin€2s = Q, = 0) and at the wings to determine the number of solitons within the composed wav
(|R2s] — 00). packet and also to calculate their parameteIQs.

7.[2
8% = —4—95 secht

Ya K
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FIG. 2. Dependence of the output soliton form factors on the amplificati
coefficientG for both kinds of broadening mechanisms: IBL (1) and HBL (2
ParametersGLg = 1, u = 0.125,§ = 0.28; IBL — 0 = 4.25,y, = 1,
IBL —y, =0.2.

2
!

fact may be attributed to the difference of the lines shapes
to the higher order perturbation effects.

We also considered the carrier frequency shift in depende
on the amplification paramet&. These results are presente
in Fig. 3. From the graphs one can conclude that for both kind
the amplification line broadening mechanisms the self-freque
shiftis approximately the same. The output valuefL ) in-
creases with decreasing & because the produ@Lg was
fixed and for a long fiber the Raman self-frequency shift is ma
pronounced.

In the next series of computer simulations we studied
dependence of the output form factor on the initial soliton fi

FIG. 1. Temporal (a) and spectral (b) evolution of the soliton pulse in an arUENCY2o. These results are presented in Fig. 4. From this fig
plifier with IBL. The graphs were obtained by numerical integration of Egs. (1pne can conclude that IBL amplifier is more effective than HE
(2), and (6) with the initial condition Eq. (29). Parametd®s= 4, Ly = 2.5, one. Maximum value of the output form factor is reached
Q0 =0,0 =425y,=1,u=0.1254 = 0.28. . .y .

Qo ~ 1.5, i.e., when the initial carrier frequency of the sol
ton is on the anti-Stokes wing of the amplification line. Tt
means that the amplification is enhanced in the case wher

It is interesting to compare the amplification dynamics fagoliton carrier frequency scans across the whole amplifica
both kinds of the broadening mechanism quantitatively. In thi@e contour due to the Raman self-frequency shift.
case of HBL the numerical integration is related to Egs. (1), (2),
and (3) with the initial condition Eq. (27). We have chosen IBL
and HBL lines with equal widths and peak gain coefficients. First 0O
we considered the cas® = 0 when the initial carrier frequency S
of input pulse corresponds to the peak of the amplification line

1
/

SPECTRUM AMPLITUDE

0

L

and assumed that the prod@&t  remains constant( is the 41 /1
fiber length). This allows the possibility for comparing adiabatic

and nonadiabatic regimes of amplification. The resulting depen- o
dencies of the output form factokgLg) on the amplification 21

coefficientG which were calculated by the inverse scattering
method are shown in Fig. 2 for the cases of homogeneously and
inhomogeneously broadened lines. Notice that large valu@s of 00 02 04 06 08

correspond to nonadiabatic amplification which is not managed Go

by the perturbation theory. FOI’ example one can Obse_rve t_he aiG. 3. Dependence of the output soliton self-frequency s#tift on the
pearance of the second soliton pulse@e- 0.3. From Fig. 2t ampiification coefficient for both kinds of broadening mechanisms: IBL (1
is clear that the soliton under IBL is amplified more effectivelgnd HBL (2). Parameter§Lg = 1, = 0.125,5 = 0.28; IBL— ¢ = 4.25,
(by 8-10% approximately) in comparison with the HBL. Thiga = 1;IBL — ya = 0.2.
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FIG. 4. Output soliton form factors as functions of the initial frequency
detuningo for both kinds of broadening mechanisms: IBL (1) and HBL (2). FIG. 5. Output soliton self-frequency shiftéf2s as functions of the initial
Parameters5 = 0.1,LF =10, = 0.1258 = 0.28;1BL—0 =4.25,ya =1,  frequency detuninqo for both kinds of broadening mechanisms: IBL (1) and
IBL —ya=0.2. HBL (2). Parameters = 0.1,LF = 10, = 0.1255 = 0.28;IBL—0 = 4.25,

ya=1IBL — ya = 0.2.
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