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We report a new theoretical approach—the spectral per-
turbations method—which offers opportunities to analyze
the evolution of the femtosecond soliton parameters in fiber
amplifiers with inhomogeneously and homogeneously broad-
ened lines. We show that the physical mechanism of the am-
plification line broadening does not affect significantly the
output soliton parameters provided that the saturation effect
is negligible. Analytical results are supported by computer
simulations. ©1996 Academic Press, Inc.

1. INTRODUCTION

In recent years great advantages of on-line amplification with
the help of erbium-doped fiber amplifiers (EDFAs) in a high-
speed fiber communication lines have been persuasively demon-
strated. In theoretical and experimental research on EDFAs it is
possible to detect at least two directions: the main one is related
to the implementation of EDFAs as on-line amplifiers in all op-
tical fiber communication lines to achieve multi-gigabit per sec-
ond pulse train propagation for several thousands of kilometers.
Experiments show that EDFAs allow practically error free trans-
mission. The use of EDFA with inhomogeneously broadened
line (IBL) yields the amplification of frequency multiplexed sig-
nals. Pulse trains with different carrier frequencies can be almost
independently amplified in EDFAs with IBL because different
signals are in resonance with different groups of active ions. The
wavelength division multiplexing techniques could offer signif-
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icant economic performance advantages for a network through
improved capacity, reliability, and transparency. An extended
list of publications on this topic is presented in [1–3].

The second research line related to EDFAs is in femtosecond
laser systems, where they play different roles either as active
elements in lasers or as external elements for further ampli-
fication and time compression of emitted laser pulses [4, 5].
The application of EDFAs with IBL opens the possibility of
new complementary implementations, for example, the simul-
taneous generation and amplification of solitons with different
carrier frequencies. This activity is very promising for a time
domain spectroscopy of ultrafast phenomena.

The mathematical description of the soliton pulse amplifica-
tion process in the range of hundreds of femtosecond duration is
well developed for amplifiers with homogeneously broadened
line (HBL) [6–8]; however, it is not quite clear for soliton-like
pulses in a fiber amplifier with a significant inhomogeneous
component.

In this paper we propose a new theoretical approach, the
spectral perturbation method, which gives us the opportunity
to analyze the amplification dynamics of femtosecond solitons
in a fiber amplifier with inhomogeneously broadened gain line.
Results of computer simulation based on direct numerical in-
tegration of the nonlinear Schrödinger equation coupled with
corresponding equations for nonlinear polarization are also pre-
sented.

2. THE MATHEMATICAL MODEL

The mathematical description of the ultrashort pulse ampli-
fication in an active fiber medium is based on the nonlinear
Schrödinger equation for the dimensionless complex amplitude
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of the pulse envelopeq(z, τ ) (see e.g. [6]):

i
∂q

∂z
= 1

2

∂2q

∂τ 2
+ (1− β)|q|2q + βQq+ i

1

2
G P. (1)

In this equation the first term on the right-hand side describes
the pulse dispersion spreading, the second term describes the
electronic nonlinearity (Kerr effect), the third term describes the
Raman contribution to the nonlinear polarization, and the last
term describes the active Er3+ ions contribution (the gain term).
The running timeτ = (t − z/u) is normalized to the input pulse
durationτ0; u is the group velocity. The distancez is normalized
to the dispersion lengthLd = τ 2

0 /|k2|, with k2 = ∂2k/∂ω2, where
k(ω) is the mode propagation constant.

The complex amplitudeq is expressed in the units of the one-
soliton pulse amplitude with the durationτ0:

|q0
s | =

√
8πk2/(τ 2

0 k0ñ2cn0),

whereñ2 = 3.2× 10−16 cm2/W is the nonlinear coefficient,n0

is the refractive index. The parameterβ ≈ 0.2 determines the
Raman contribution to the nonlinear refractive index. The am-
plification parameterG = Ld/La, whereLa is the amplification
length [6].

The dynamics of the molecular oscillations induced by ultra-
short pulses is governed by the equation for the real amplitude
Q:

µ2∂
2Q

∂τ 2
+ 2µδ

∂Q

∂τ
+ Q = |q|2. (2)

Hereµ = (τ0ÄR)
−1, δ = (T R

2 ÄR)
−1, whereÄR is the Ra-

man resonant frequency, andT R
2 = 1/(π1νR) is corresponding

characteristic time,1νR is the Raman line bandwidth. For silica
glass fiber typical values of these parameters areÄR ' 83 THz,
1νR ' 7.5 THz,T2 ' 50 fs. The amplitudeQ is expressed in
the unitsQn = χ ′Q|qs|2/4MÄ2

R, with χ ′Q = ∂χ /∂Q, whereχ is
the electronic polarizability of the molecule which depends on
Q parametrically andM is the effective molecule mass.

Considering the process of amplification of the femtosecond
soliton it is necessary to take into account that the one-soliton en-
ergy density(∼ 10−4 J/cm2) is several orders lower than the sat-
uration energy density of the resonant transition (∼ 10 J/cm2),
so the variation of the laser transition population is negligible. In
the case of homogeneous broadening we can write the following
equation for the ion polarization complex amplitude:

γa
∂P

∂τ
+ (1+ i γa1)P = q. (3)

The complex amplitudeP has been normalized to the value
Pn = d2N0|q0

s |2/~, whered is the dipole moment of the reso-
nant transition,N0 is the density of the poupulation inversion
created by the pump,γa = T2/τ0 is the normalized dipole decay
time which is related to the width of the homogeneous line by
the formulaT2 = 1/(π1νh). For different doping component

the value of1νh varies within the interval 0.54–1.5 THz (18–
50 cm−1) [3]. The parameter1 = (ω0−ω12)τ0 is the normalized
soliton carrier frequency detuning from the resonance transition
frequencyω12.

In a spectral domain Eq. (3) describes an amplification line
with the Lorentzian contour:

P(Ä) = q(Ä)

1− i γa(Ä−1). (4)

For Al2O3:SiO2 core optical fibers the line broadening is mainly
homogeneous but for GeO2:SiO2 core fibers inhomogeneous
broadening dominates [3]. In the latter case the spectrum of the
resonant polarization can be expressed as the average of Eq. (4)
over the inhomogeneous line contourg(1):

P(Ä) = q(Ä)
∫ ∞
−∞

g(1)

1− i γa(Ä−1)d1. (5)

Notice that Eq. (5) represents a convolution of the Lorentzian
line with the spectral distribution of the active ions. In the time
domain the polarization complex amplitudeP(τ ) can be ob-
tained as the inverse Fourier transformation of Eq. (5):

P(τ ) = 1

2π

∞∫∫
−∞

g(1)q(Ä) exp(−iÄτ)

1− i γa(Ä−1) d1 dÄ. (6)

For computer simulation we used the Gaussian line shape

g(1) = 1√
2πσ

exp

(
− 1

2

2σ 2

)
, (7)

whereσ is the semiwidth of the IBL; it is related to the charac-
teristic timeT∗2 by the formulaσ = (

√
2 ln 2T∗2 )

−1. A typical
value of the inhomogeneous width is of the order of 50 cm−1

[3].
Finally we highlight that the effect of IBL can be remarkable

in the amplification of soliton pulse trains with a high repetition
frequency. In this case the saturation effect plays an important
role and a spectral hole burning may be essential.

3. SPECTRAL PERTURBATIONS OF
OPTICAL SOLITON

It is well known that the unperturbed Schrödinger equation
(Eq. (1) in the caseβ = 0, G = 0) has the one-soliton solution
which can be written as

qs(z, τ ) = κ sech[κ(τ− τs)+Äsz] exp[i8(z, τ )], (8)

8(z, τ ) = Äs(τ − τs)− (κ2−Ä2
s)z/2+ φs,

whereκ is the form factor determining the soliton amplitude
and its duration,Äs is the normalized central frequency,τs is
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the time coordinate of the soliton center,φs is the initial phase.
In the case of the perturbed Schrödinger equation the soliton
parameters should be treated as functions of evolution variable
z: κ = κ(z),Äs = Äs(z), τs = τs(z), φs = φs(z).

Raman contribution to the nonlinear polarization∼ βQqusu-
ally acts as a small perturbation and it does not change the soliton
form factor (δκR = 0 at least in the frame of the first order ap-
proximation) but causes monotonic inz red self-frequency shift
which strongly depends on the form factor [9]

δÄR
s = −

8

15
σκ4dz, (9)

where the parameterσ = 2βµγ .
If the amplification parameterG = Ld/La satisfies the in-

equalityG¿ 1, this means that the soliton energy increment at
the distance of one dispersion length is relatively small, and the
last term in Eq. (1) can also be treated as perturbing one. Such
a situation is typical only for femtosecond solitons. Then the
complex amplitude variationδq resulting from passing a small
distancedzcan be written as

δq(z, τ ) = 1

2
G P(z, τ )dz, (10)

whereP(z, τ ) is governed by Eq. (5) assumingq = qs(z, τ ).
To calculate appropriate variations of the soliton parametersδκ,
δÄs one can use the known integral relations in a time domain
[10]:

δκ = κ
∫ ∞
−∞

sech(κτ)<[exp(−iÄsτ)δq(τ )] dτ, (11)

δÄs = κ
∫ ∞
−∞

sech(κτ)tanh(κτ)=[exp(−iÄsτ)δq(τ )] dτ.

(12)
But in the problem under consideration relations betweenδκ,
δÄs, andδq are more conveniently expressed in a spectral do-
main. Substituting the inverse Fourier transform ofδq(τ ),

δq(τ ) =
∫ ∞
−∞

δq(Ä) exp(iÄτ) dÄ, (13)

into Eqs. (11) and (12) and evaluating interior integrals overτ

we obtain

δκ = π
∫ ∞
−∞

sech

[
π(Ä−Äs)

2κ

]
<[δq(Ä)] dÄ, (14)

δÄs = 2
∫ ∞
−∞

[
π(Ä−Äs)

2κ

]
× sech

[
π(Ä−Äs)

2κ

]
<[δq(Ä)] dÄ. (15)

So, the form factor variationδκ is proportional to the overlap in-
tegral of the soliton spectral amplitudeqs(Ä) = (1/2)sech[π(Ä−
Äs)/2κ] with the spectral amplitude of perturbationδq(Ä). The
soliton frequency variationδÄs is proportional to the first mo-
ment of the same overlap integral about the pointÄ = Äs.

Taking into account Eqs. (5) and (10) we express the real part
of the spectral perturbation as

<[δq(Ä)] = 1

2
Gdz qs(Ä)

∫ ∞
−∞

g(1)

1+ γ 2
a (Ä−1)2

d1. (16)

Using Eq. (16) and Eqs. (14) and (15) one can easily calculate
variations of the soliton parameters by numerical integration,
but some important particular cases can be treated analytically.
For example, if inhomogeneous broadening dominates over ho-
mogeneous broadening thenT∗2 ¿ T2 and the pulse is relatively
shortτ0 ¿ T2 (γa À 1), then it is possible to approximate the
Lorentz factor in Eq. (16) by Diracδ-function:

1

1+ γ 2
a (Ä−1)2

≈ π

γa
(Ä−1). (17)

The resulting spectral perturbation is written as

<[δq(Ä)] ≈ π

2γa
Gdz qs(Ä)g(Ä). (18)

Thenδκ andδÄs can be determined from Eqs. (14) and (15) as

δκ = π2

4γa
Gdz

∫ ∞
−∞

sech2
[
π(Ä−Äs)

2κ

]
g(Ä) dÄ, (19)

δÄs = π

2γa
Gdz

×
∫ ∞
−∞

π(Ä−Äs)

2κ
sech2

[
π(Ä−Äs)

2κ

]
g(Ä) dÄ. (20)

The form-factor incrementδκ is proportional to the overlap in-
tegral of the soliton spectral intensity|qs(Ä)|2 with the amplifi-
cation line spectral profileg(Ä). The soliton frequency variation
δÄs is proportional to the first moment of the integral mentioned
above.

When considering homogeneously broadened line we can use
Eqs. (4), (10), and (12) and obtain that

δκ = π

4
Gdz

∫ ∞
−∞

sech2
[
π(Ä−Äs)

2κ

]
1

1+ γ 2
aÄ

2
dÄ, (21)

δÄs = 1

2
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−∞

[
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2κ

]
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[
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2κ

]
× 1

1+ γ 2
aÄ

2
dÄ. (22)
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As in the previous case (Eqs. (19) and (20)) the soliton parameter
variations may be determined as appropriate overlap integrals.
This means that in the frame of the first-order perturbation the-
ory, amplification of the femtosecond soliton basically does not
depend on the broadening mechanism but only on the parameters
and on the shape of the amplification line.

Let us return to the inhomogeneously broadened line and con-
sider the physically relevant solutions which may be obtained as
limiting cases of Eqs. (19) and (20). For a narrow band soliton
(κ/τ0¿ 1/T∗2 ) one can use the approximations

sech2
[
π(Ä−Äs)

2κ

]
≈ 4κ

π
δ(Ä−Äs), (23)

Ä−Äs

κ
sech2

[
π(Ä−Äs)

2κ

]
≈ 2 ln 2

π
[δ(Äs + κ/2)− δ(Äs − κ/2)], (24)

and express the soliton parameters variations in the explicit form

δκ = π

γa
κg(Äs)Gdz, (25)

δÄs = π ln 2

2γa

(
∂g

∂Ä

)
Äs

κGdz. (26)

Equation (25) predicts exponential growth of the form factorκ

with the distancez. Equation (26) describes pulling of the pulse
spectrum toward the gain peak or spectral self-trapping. The
pulling strength is proportional to the slope of the amplification
line contour∂g/∂Ä at the pointÄ = Äs.

In the opposite case of a narrow amplification line (for exam-
ple Gaussian line Eq. (7) in the limitσ → 0) or a broadband
soliton(κ/τ0À 1/T∗2 ) we haveg(Ä) ≈ δ(Ä) and Eqs. (19) and
(20) reduce to

δκ = π2

4γa
sech2

[
πÄs

2κ

]
Gdz, (27)

δÄs = − π
2

4γa
Äs sech2

[
πÄs

2κ

]
Gdz. (28)

The first of these equations predicts rather slow linear growth
of the broadband soliton form factorκ with the distancez. The
second one describes trapping of the pulse spectrum under the
center(Äc = 0)of a narrow amplification line. It is important to
note that the restoring “force” at the right-hand side of Eq. (26)
has the maximum value at the pointÄs ≈ κ/2; it vanishes at the
center of the amplification line(Äs = Äc = 0)and at the wings
(|Äs| → ∞).

4. NUMERICAL SIMULATION

An analytical description which was presented in the previous
section is valid only for adiabatic (slow onz) amplification of the
one-soliton pulse. In our numerical experiments transformation
of the pulse shape and its spectrum was analyzed by integrating
Eqs. (1), (2), and (6) along the active fiber.

The split-step algorithm was used for numerical integration
of the nonlinear Schrödinger equation. It allows us to calcu-
late the complex amplitudeq on eachz step as a result of the
successive application of operators describing dispersion pulse
spreading, the self-phase modulation, amplification and Raman
self-frequency shift. The spectral approach was used to calcu-
late the dispersion spreading. Integration of the equations for
molecular oscillations and active ion polarization was also ac-
complished by the spectral method based on the fast Fourier
transform algorithm. For calculation of the active ion polariza-
tion the integral in Eq. (6) was approximated by the sum of
Lorentzian lines (Eq. (4)) with the weight factors corresponding
to the amplification line contourg(Ä).

In numerical experiments we usually take a pulse of the form

q(0, τ )= sech(τ )exp(iÄ0τ) (29)

as the initial condition, whereÄ0 is the normalized byτ−1
0 de-

tuning between the pulse initial carrier frequency and the gain
peak frequency.

To visualize dynamics of the femtosecond soliton amplifica-
tion we present the phenomenological picture of such a process.
Figure 1a shows the evolution of the pulse shape during nona-
diabatic amplification. Notice that the growth of the soliton am-
plitiude results in decreasing of its duration and consequently
stimulates the red self-frequency shift (see also Eq. (9)). In-
creasing of the group delay due to the self-frequency shift is
quite obvious in a time domain. One can also see that a new
pulse appears at the second half of the propagation distance.

The pulse spectrum evolution can help us to understand the
physics of the process. In Fig. 1b the spectrum of the ampli-
fied soliton is shown for differentz. It is clear that the main
soliton component of the spectrum broadens, shifts to the lower
frequency region, and leaves the contour of the amplification
line almost completely at the end of propagation distance. The
amplification process stops and the soliton form factor reaches
its stationary value but the carrier frequncy continues to shift
into the red spectral region. One can also observe a new spectral
cluster appearing under the amplification line. In a time domain
it corresponds to the new pulse. Notice that the same phenomena
are observed during amplification in a fiber with homogeneously
broadened line [6] provided that saturation is negligible. We have
used the inverse scattering transform method [10] for analysis
of the complicated wave packets obtained as the result of nu-
merical integration (see for example Fig. 1a). It gives possibility
to determine the number of solitons within the composed wave
packet and also to calculate their parametersκ,Äs.
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(a)

(b)

FIG. 1. Temporal (a) and spectral (b) evolution of the soliton pulse in an am-
plifier with IBL. The graphs were obtained by numerical integration of Eqs. (1),
(2), and (6) with the initial condition Eq. (29). Parameters:G = 4, L F = 2.5,
Ä0 = 0, σ = 4.25,γa = 1,µ = 0.125,δ = 0.28.

It is interesting to compare the amplification dynamics for
both kinds of the broadening mechanism quantitatively. In the
case of HBL the numerical integration is related to Eqs. (1), (2),
and (3) with the initial condition Eq. (27). We have chosen IBL
and HBL lines with equal widths and peak gain coefficients. First
we considered the caseÄ0 = 0 when the initial carrier frequency
of input pulse corresponds to the peak of the amplification line
and assumed that the productGLF remains constant (L F is the
fiber length). This allows the possibility for comparing adiabatic
and nonadiabatic regimes of amplification. The resulting depen-
dencies of the output form factorsκ(L F ) on the amplification
coefficientG which were calculated by the inverse scattering
method are shown in Fig. 2 for the cases of homogeneously and
inhomogeneously broadened lines. Notice that large values ofG
correspond to nonadiabatic amplification which is not managed
by the perturbation theory. For example one can observe the ap-
pearance of the second soliton pulse forG > 0.3. From Fig. 2 it
is clear that the soliton under IBL is amplified more effectively
(by 8–10% approximately) in comparison with the HBL. This

FIG. 2. Dependence of the output soliton form factors on the amplification
coefficientG for both kinds of broadening mechanisms: IBL (1) and HBL (2).
Parameters:GLF = 1, µ = 0.125,δ = 0.28; IBL − σ = 4.25, γa = 1;
IBL − γa = 0.2.

fact may be attributed to the difference of the lines shapes and
to the higher order perturbation effects.

We also considered the carrier frequency shift in dependence
on the amplification parameterG. These results are presented
in Fig. 3. From the graphs one can conclude that for both kinds of
the amplification line broadening mechanisms the self-frequency
shift is approximately the same. The output value ofÄs(L F ) in-
creases with decreasing ofG because the productGLF was
fixed and for a long fiber the Raman self-frequency shift is more
pronounced.

In the next series of computer simulations we studied the
dependence of the output form factor on the initial soliton fre-
quencyÄ0. These results are presented in Fig. 4. From this figure
one can conclude that IBL amplifier is more effective than HBL
one. Maximum value of the output form factor is reached at
Ä0 ' 1.5, i.e., when the initial carrier frequency of the soli-
ton is on the anti-Stokes wing of the amplification line. This
means that the amplification is enhanced in the case when the
soliton carrier frequency scans across the whole amplification
line contour due to the Raman self-frequency shift.

FIG. 3. Dependence of the output soliton self-frequency shiftδÄs on the
amplification coefficientG for both kinds of broadening mechanisms: IBL (1)
and HBL (2). Parameters:GLF = 1,µ = 0.125,δ = 0.28; IBL− σ = 4.25,
γa = 1; IBL − γa = 0.2.
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FIG. 4. Output soliton form factors as functions of the initial frequency
detuningÄ0 for both kinds of broadening mechanisms: IBL (1) and HBL (2).
Parameters:G = 0.1,L F = 10,µ = 0.125,δ = 0.28; IBL−σ = 4.25,γa = 1;
IBL − γa = 0.2.

The output Raman self-frequency shiftÄs(L F ) in the case of
adiabatic amplification is shown in Fig. 5 as a function ofÄ0.
Maximum of theÄs(L F ) is reached at the pointÄ0 ∼ 1, which
corresponds to the maximum of the form factor; this is quite
natural because the Raman self-frequency shift strongly grows
with κ.

5. CONCLUSION

In conclusion we would like to emphasize that the Raman self-
frequency shift is one of the most important factors which limits
the amplification of femtosecond solitons in IBL and HBL ac-
tive fibers. The physical mechanism of the line broadening does
not affect significantly on the femtosecond soliton amplification
provided that the lines contours are similar and saturation effect
is negligible. Appreciable enhancement of the amplification fac-
tor can be achieved in the case when the initial carrier frequency
of the soliton is on the anti-Stokes wing of amplification line or
a broadband line is used. In our opinion the spectral perturbation
method presented in this paper is very useful for analysis of the
ultrashort soliton propagation.
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FIG. 5. Output soliton self-frequency shiftsδÄs as functions of the initial
frequency detuningÄ0 for both kinds of broadening mechanisms: IBL (1) and
HBL (2). Parameters:G = 0.1,L F = 10,µ = 0.125,δ = 0.28; IBL−σ = 4.25,
γa = 1; IBL − γa = 0.2.
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