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We present an alignment technique that exploits angular correlations by employing a pair of masks, which encode
in an angular format pseudo-random sequences. The angular correlator generates peaked irradiance distributions
on-axis, provided that the elements of the pair are aligned. Otherwise, the on-axis irradiance distribution de-
creases to a minimum value. Since the proposed angular correlator is independent of the lateral magnification,
it is useful for testing the performance of varifocal lenses. A merit function describes the tolerance to focus errors
associated with the location of a small size detector. We use linearly polarized films for showing that the technique
also works well with broad band light. © 2017 Optical Society of America
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1. INTRODUCTION

Presently, there are several competing technologies for imple-
menting varifocal lenses [1–5]. Among other applications,
varifocal lenses can be useful for implementing non-conventional
zoom systems [6–10]. As the magnification changes, the zoom
systems must produce images that are neither shifted nor rotated.

Hence, one needs an alignment technique for testing that
the images remain at fixed locations, while the magnification
changes. For this task, it is convenient to employ fiducial
marks, which have low sensitivity to lateral magnification,
but high sensitivity to angular mismatching.

In Fig. 1, we depict the use of a varifocal lens for imaging
with variable lateral magnification, jM j > 1, two planes that
are separated by a fixed distance T . At the input plane, we place
a mask with amplitude transmittance equal to P1�ρ;ϕ�. Just
behind the image plane, we place a second mask, whose com-
plex amplitude transmittance is equal to P1�ρ;ϕ − 180°� for
compensating the geometrical inversion caused by the lens.
An additional lens is used for focusing on-axis the irradiance
distribution, which is recorded using a small size detector.

In what follows, we show that optical system in Fig. 1 is an
angular correlator. As a working hypothesis, we assume that the
performance of the angular correlator is improved by employ-
ing pseudo-random sequences in an angular format. Hence, we
discuss the design of mask encoding in the angular format,
known as Barker sequences [11].

For properly framing our proposal, we note that Moiré pat-
terns are useful for detecting subtle displacements or local

distortions if one uses two (or more) periodic patterns. Since
moiré patterns can be recorded under noncoherent illumina-
tion, the moiré techniques have low sensitivity to noise [12,13].

On the other hand, optical correlations can be exploited for
implementing several metrological devices. This field can be
traced back to the Hanbury Brown and Twiss effect [14]
and to the pioneering uses of speckle interferometry [15,16].
We note that digital image correlations also work under
noncoherent illumination [17,18].

Optical correlations employing pseudo-random sequences
[19] find applications for sharpening Moiré fringes [20,21]
and for generating novel periodic patterns [22,23].
Interestingly, pseudo-random sequences are useful for reducing
the presence of Moiré patterns [24,25], and, rather recently,
pseudo-random bit sequences have been used for surpassing
the Shannon–Nyquist sampling ratio [26,27].

Here, we unveil the use of a pair of optical masks that en-
code angular Barker pseudo-random sequences for implement-
ing an angular correlator. We show that the angular correlations
generate highly peaked irradiance distributions on-axis, pro-
vided that the pair is angularly aligned. Otherwise, the on-axis
irradiance distribution decreases to a minimum value.
Furthermore, we note that variations on the correlation peaks
are useful for identifying geometrical distortions on the masks.
As a proof of principle, we use linearly polarized films for show-
ing that the technique also works well with broad band light.

In Section 2, we apply the McCutchen theorem [28,29] for
describing the collected irradiance behind the pair of angularly
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coded masks. In Section 3, we discuss the designing steps for
proposing a pair of angular masks encoding nested Barker se-
quences. In Section 4, we discuss the use of a merit function for
analyzing the tolerance to focus error of the detector. In
Section 5, we describe the use of two orthogonal polarization
states for implementing, under noncoherent illumination, an
angular version of the Barker sequence. In Section 6, as a proof
of principle, we report preliminary experimental results. Finally,
in Section 7, we summarize our contribution.

2. BASIC THEORY

In Fig. 2, we illustrate other possible configurations for using
the proposed pair of masks. The optical setups in Fig. 2 depict
the idea that the proposed masks can be thought of as a spatial
filter in the Fourier domain. However, the relevant feature is
collecting the overall irradiance distribution that is focused
on-axis. We note that in Fig. 2, the collection is done by using
either a single lens or two lenses. In Fig. 1, a final lens is needed
for focusing, on-axis, the overall irradiance distribution.

We are interested in evaluating the complex amplitude
transmittance behind the pair of masks, after introducing an
angular mismatch between the elements of the pair;

P�ρ;ϕ; α� � P1

�
ρ;ϕ� α

2

�
P1

�
ρ;ϕ −

α

2

�
: (1)

In Eq. (1), we denote (ρ, ϕ) as the polar coordinates at
planes containing the masks. Also in Eq. (1), the Greek letter
α denotes an in-plane rotation angle between the elements of
the pair.

Next, we recognize the following result that incorporates a
possible error z on the axial location of the small size detector.
In the paraxial regime, the complex amplitude transmittance

at the detector plane is obtained by taking the following
two-dimensional (2D) Fourier transform:

p�r; θ; z; α� �
Z

∞

0

Z
2π

0

P�ρ;ϕ; α� expf−iπλzρ2g

× expfi2πrρ cos�θ − ϕ�gρ dρdϕ: (2)

As before, in Eq. (2), the overall complex amplitude trans-
mittance is denoted as P�ρ;ϕ; α�. We represent the cylindrical
coordinates in the image domain as (r; θ; z). Since we use a
small detector on-axis, we are interested in the complex
amplitude distribution at r � 0. Then, Eq. (2) reduces to

p�0; θ; z; α� � 2π

Z
∞

0

hP�ρ; α�i expf−iπλzρ2gρdρ: (3)

In Eq. (3), we identify the following angular autocorrelation:

hP�ρ; α�i �
�

1

2π

Z
2π

0

P1

�
ρ;ϕ� α

2

�
P1

�
ρ;ϕ −

α

2

�
dϕ

�
:

(4)

In what follows, we exploit the above angular autocorrela-
tion for describing an in-plane rotation sensor.

3. ANGULAR MASK WITH BARKER CODING

For the sake of clarity of our discussion, in what follows, we
describe the designing steps for composing the proposed pair.

Fig. 1. Schematics of an angular correlator. Varifocal lens images
with variable lateral magnification jM j > 1, two planes that are sep-
arated by a fixed distance T . At the input plane, we locate a mask,
whose amplitude transmittance is P1�ρ;ϕ�. Just behind the image
plane, we place a second mask, whose amplitude transmittance is
P1�ρ;ϕ − 180°�. An additional lens is used for focusing on-axis the
overall irradiance distribution.

Fig. 2. Optical setups that can be employed for collecting the irra-
diance distribution behind t, a pair of angular coded masks. Here, the
pair of angularly coded masks is located at the Fraunhofer plane: (a) the
optical setup uses a single lens; (b) the optical setup is the classical two-
lens optical processor.
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In the first step, we consider that each mask has an integer
number, say L, of radial narrow slits, as is depicted in Fig. 3.
These radial slits are transparent over an otherwise opaque
support. That is,

P1�ρ;ϕ� �
XL−1
l�0

Bl δ

�
ϕ −

l
L
2π

�
circ

�
ρ

Ω

�
: (5)

In Eq. (5), the Latin letter Bl denotes the l th value of the
Barker sequence of length L. The Dirac’s delta represents the
radial slits, which are angularly located at φ � �l∕L�2π for
l � 0, 1…L − 1. The mask is placed over a circular support,
which is represented by the circular function,

circ

�
ρ

Ω

�
�

�
1 if ρ ≤ Ω
0 if ρ > Ω : (6)

In Eq. (6), the Greek letter Ω denotes the cutoff spatial fre-
quency. It is rather intuitive to visualize that in the absence of
an in-plane rotation (α � 0), the narrow slits of both masks
coincide. Hence, the overall transmittance has a high value,
which is proportional to the Barker length L.

If the set of slits of one mask is obstructed by the opaque
regions of the other mask (0 < jαj < 2π∕L), then the overall
transmittance is zero.

Next, we note the following: if the rotation angle is jαj �
n�2π∕L� for n � 1, 2…L − 1, then Eq. (4) is equal to a mini-
mum value. Except for the Barker sequence of length L � 4,

the minimum value is equal to −2, −1, 1, −1, −1, 1 for the
Barker sequence of lengths L � 2, 3, 5, 7, 11, 13, respectively.

As is depicted in Fig. 4, for this early design, we recognize
that the whole operation described in Eq. (4) is the autocorre-
lation of the Barker sequence,

�
P
�
ρ;
2π

L
n
��

� 1

2π

XL−1
m�0

Bm�nBmcirc

�
ρ

Ω

�
: (7)

We note that by using narrow transparent slits over an oth-
erwise opaque support, one generates a pair that has low light
gathering power. Furthermore, the transition from the
maximum correlation value to the minimum value happens un-
til the misalignment angle is equal to (2π∕L). For L � 13, the
misalignment angle is equal to 27.69°. This value of angular
misalignment may be too high for some applications. For
surpassing this limitation, we discuss, next, the final step of
our design.

One can increase the sensitivity to angular misalignment or,
equivalently one, can lower the tolerance to angular mismatch
by using nested codes. One way of obtaining a nested code is to
employ the direct product of the Barker sequence, which is
commonly denoted as BL ⊗ BL; see, for example, Ref. [19].
The sequence associated with the direct product of the

Fig. 3. Circular masks with radial narrow slits over an otherwise
opaque support: (a) the slits are equiangular distributed; (b) each slit
has a complex amplitude transmittance that is equal to the values of
the Barker sequence of length L � 13.

Fig. 4. Angular distributed radial slits and their angular autocorre-
lation: (a) Cartesian-like representation of the Barker sequence of
length L � 13; (b) the angular autocorrelation for in-plane rotations
α � n�2π∕13� with n � 0, 1, 2, and 3…13.
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Barker sequence of length L has L × L elements. The elements
of the direct product of the Barker sequence of length 13 are

B13 ⊗ B13 �

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1;
1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1;
1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1;
1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1;
1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1;

−1; −1; −1; −1; −1; 1; 1; −1; −11; −1; 1; −1;
−1; −1; −1; −1; −1; 1; 1; −1; −11; −1; 1; −1;

1; 1; 1; 1; 1; −1; −1; 1; 1 − 1; 1; −1; 1;
1; 1; 1; 1; 1; −1; −1; 1; 1 − 1; 1; −1; 1;

−1; −1; −1; −1; −1; 1; 1; −1; −11; −1; 1; −1;
1; 1; 1; 1; 1; −1; −1; 1; 1 − 1; 1; −1; 1;

−1; −1; −1; −1; −1; 1; 1; −1; −11; −1; 1; −1;
1; 1; 1; 1; 1; −1; −1; 1; 1; −1; 1; −1; 1

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

:

(8)

In Fig. 5, we depict the 169 angular slits elements that are
reported in Eq. (8).

For the nested Barker length of 13 × 13, the angular auto-
correlation varies from 169 to 10. The drop occurs when the
angular misalignment is equal to 2π∕169. If you will, the sen-
sitivity to misalignment is (2.132)°. This value may be useful
for several applications. However, we note that in this paper we
have failed to present a practical limit to the number of slits.

4. FOCUS ERROR TOLERANCE

Next, we analyze the sensitivity of our proposal to errors caused
by the location of the small size detector along the optical axis.
To this end, it is convenient to normalize the irradiance distri-
bution associated with the complex amplitude in Eq. (4). By
taking into account the results in Eq. (7), we write the axial
amplitude distribution in Eq. (3) as follows:

p�0; θ; z; α� � 2π

Z
∞

0

hP�ρ; α�i expf−iπλzρ2gρdρ: (9)

Now, except for the length L � 4, the generic formula for
the angular autocorrelation is

hP�ρ; α�i � L
2π

�
1 −

�
1 −

Min

L

�				 L2π α
				


circ

�
ρ

Ω

�
if jαj ≤ 2π

L
:

(10)

In Eq. (10), we denote as “Min” the minimum value of the
angular autocorrelation. Except for L � 4, the minimum value
is equal to −2, −1, 1, −1, −1, 1 for the lengths L � 2, 3, 5, 7,
11, 13, respectively.

Next, for analyzing the influence of focus errors, in terms of
the focus error coefficient W 2;0, it is convenient to employ the
following change of variables:

ζ �
�ρ
Ω

�
2
−
1

2
; rect�ζ� � circ

�ρ
Ω

�
;

W 2;0 � −

�
λ2Ω2

2

�
z;

q�α;W 2;0� � p�0; θ; z; α�: (11)

By substituting Eq. (11) in Eq. (9) and after performing the
integration, we obtain

q�α;W 2;0� � �πΩ2�L
�
1 −

�
1 −

Min

L

�				 L2π α
				



× exp
�
iπ

W 2;0

λ

�
sinc

�
W 2;0

λ

�
: (12)

Now, for analyzing the sensitivity to angular mismatch and
the tolerance to focus errors, we propose to use the square
modulus of the normalized version of the complex amplitude
distribution in Eq. (12). That is,

T �α;W 2;0� �
				 q�α;W 2;0�

�πΩ2�L

				
2

;

T �α;W 2;0� �
�
1 −

�
1 −

Min

L

�				 L2π α
				


2
�
sinc

�
W 2;0

λ

�

2

;

if jαj ≤ 2π
L : (13)

We recognize that Eq. (13) is a new expression of the Strehl
ratio versus focus errors, which is valid for the arbitrary Barker
sequence of length L. This new formula has two independent
factors. The first factor in Eq. (13) describes the changes of the
angular autocorrelation as a function of the Barker length. This
first factor is plotted in Fig. 6.

The second factor in Eq. (13) is the square of the cardinal
sine function, which is identical to the Strehl ratio versus focus
error of any imaging device, working at full pupil aperture.

From the result in Eq. (13), it is convenient to recognize the
following: for angularly encoding a mask that has a high num-
ber of segments, it is convenient to have a central obscuration.
Hence, it is relevant to analyze our proposed procedure when
using annularly distributed masks. As is discussed in Appendix
A, for annularly distributed masks with obscuration ratio ε,
Eq. (13) becomes

Fig. 5. Angular coding employing the direct product of the Barker
sequence of length L � 13.
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T �α;W 2;0� � �1 − ε2�2
�
1 −

�
1 −

Min

L

�				 L2π α
				


2

×
�
sinc

�
�1 − ε2�W 2;0

λ

�

2

: (14)

It is clear from Eq. (14) that if one uses angular coded
masks, which have a central obscuration, then the optical sys-
tem has an increased tolerance to the focus error by the factor
1∕�1 − ε2�. However, we recognize that the central obscuration
reduces the light gathering power by the factor �1 − ε2�2.

5. POLARIZATION CODING SCHEME

In Fig. 7, we depict our proposal of using linearly polarized
films for encoding, with high light throughput, the values of
a Barker sequence of length L � 3. In Fig. 7(a), we use line
arrows for depicting the positions of the three slits, while we
employ boxed arrows for indicating the orientations of the
linearly polarized films that cover the slits.

Two linearly polarized films (depicted as boxed arrows in red
and in blue) are radially orientated. The remaining polarizer
(depicted as a boxed arrow in black) is angularly orientated.
Radial orientations represent the number one in the Barker se-
quence, while the angular orientation represents the number
minus one in the Barker sequence.

In Fig. 7(b), we show the position changes of the slits, after
introducing an in-plane rotation in steps of 120°. In Fig. 7(c),
pairs of boxed arrows represent (at each slit) either crossed-
polarization or polarization alignment.

It is apparent from Fig. 7 that by introducing an in-plane
rotation of 120°, or of 240°, the angular correlation drops from
the value of three to the value of one. Hence, for the polarized

encoded masks, the ratios between the maxima and minima are
not as high as the ratios of the original Barker sequences despite
the fact that the polarization scheme provides a high light
throughput.

As is depicted in Fig. 8, the ratio between the maxima
and minima do not reach the expected values of the Barker
sequences. However, the polarization scheme can be used
with noncoherent light and for a rather wide chromatic
spectral range.

Fig. 6. Normalized versions of the angular autocorrelation for the
variable Barker length. Along the horizontal axis, a black broken line
represents a threshold value of 10% for avoiding the presence of white
noise.

Fig. 7. On the left hand side, as line arrows, we display the position
of the three slits on the mask, and, as boxed arrows, we depict the
orientations of the linear polarizers. At the central column, we illus-
trate the position of the slits after in-plane rotations of 120°. At the
right hand side, the boxed arrows depict either polarization alignment
or crossed-polarization.

Fig. 8. Graphical display of the ratios between the maxima and the
minima of the Barker sequence of length L � 3, 5, 7, 11, and 13.
(a) As a blue curve, we plot the ratios of the original Barker sequence.
(b) As a red curve, we display the ratios for the polarization encoded
versions. Further details of the polarization scheme are beyond our
present scope. They will be published elsewhere. Next, we report pre-
liminary experimental results of our proposals.
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6. PRELIMINARY EXPERIMENTAL
VERIFICATIONS

In Fig. 9, we show the experimental setup for verifying the
designs depicted in Fig. 3 for L � 3 and L � 13.

A three-dimensional (3D) printer was used for generating
(over otherwise uniform support) the required slits. The width
of each slit is equal to 1 mm� 0.1 mm, and the angular
locations have errors of around 10% from the nominal values.
As is apparent from Fig. 9, behind the masks, the diffraction
spread is negligible.

In Fig. 10, we report the angular correlations that are
obtained when employing clear slits (without polarization
coding). From these preliminary experimental results, we claim
that the angular correlations do exhibit narrow irradiance peaks.
We also note that the maxima do not have the same values due to
shape dissimilarities between the slits. Hence, the proposed tech-
nique can discriminate geometrical distortions on the masks.

In Fig. 11, we show the angular correlation if the proposed
polarization coding is employed. We note that in this later case,
the angular correlation has a high peak (with normalized irra-
diance distribution equal to unity) at θ � 0° and two peaks
(with normalized irradiance distribution around the value equal
to 0.3) at θ � �120°. Again, the secondary peaks are different
due to shape dissimilarities between the slits.

It is apparent from Fig. 11 that by using the polarization
coding scheme, the angular correlation is able to discriminate
well between the angular position θ � 0° and the angular po-
sition θ � �120°. We obtain the above results using a He–Ne
laser (λ � 623.8 nm), but we verify that similar results are also
obtained with a broad band source.

Despite experimental limitations, the above preliminary re-
sults show that indeed one can obtain highly peaked angular
correlations, which are able discriminate either angular
misalignments or the mask’s shape distortions.

7. CONCLUSIONS

We have indicated that for testing the performance of varifocal
lenses, it is desirable to have a technique for verifying that the

Fig. 9. Preliminary experiments: (a) The optical setup; (b) the ir-
radiance distribution just behind the mask with 3 slits; and (c) the
irradiance distribution with 13 slits.

Fig. 10. Angular correlations obtained by using the optical setup in
Fig. 9 and the masks in Fig. 3. For the experimental results in (a), we
use three narrow slits. (b) The angular correlations are obtained using
13 slits.

Fig. 11. Normalized angular correlation as a function of the rota-
tion angle θ if the pair of masks uses the polarization encoding scheme
for the Barker sequence of length L � 3.
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magnified images do not suffer from either geometrical distor-
tions or in-plane rotations.

For the above tasks, we have noted that spindle patterns may
be useful, since the images of these patterns have low depend-
ence to lateral magnification.

We have shown that one can implement an angular corre-
lator by employing a pair of suitably coded masks. We have
discussed the designing steps for angularly encoding the masks
forming the pair.

We have indicated that the proposed designs exploit the
autocorrelation properties of the Barker sequence or pseudo-
random sequence.

We have shown that the axial irradiance distribution reaches
a maximum value if the elements of the composed pair are
aligned. If there is an angular misalignment between the
elements of the pair, then the axial irradiance distribution drops
to a minimum value.

For the standard Barker sequence, the transition from the
maximum to the minimum happens until the misalignment
angle is equal to (2π∕13). If you will, it is equal to
(27.69°). We have reported an analytical expression that relates
the values of the angular autocorrelation versus angular
misalignment.

We have proposed to use nested versions of the Barker code.
We have shown that by using a nested Barker sequence, the
transition from the maximum to the minimum happens if
the misalignment angle is equal to (2π∕169). If you will, it
is equal to (2.132°). We did not report any analytical formula
for this case.

We have defined a merit function for describing the sensi-
tivity of the method to focus errors. The merit function is a new
expression of the Strehl ratio versus focus errors for an arbitrary
Barker sequence of length L. The new formula has two inde-
pendent factors. The first factor describes the changes of the
angular autocorrelation as a function of the Barker length.
The second factor is the square of the cardinal sine function,
which is identical to the Strehl ratio versus focus error of any
imaging device, working at full pupil aperture.

Our preliminary experimental results show that the angular
correlations do generate narrow irradiance peaks. The varia-
tions on the values of the peaks are useful for identifying geo-
metrical distortions of the slits. We have shown that the
discrimination capabilities of the technique can be enhanced
by coding the negative values and the positive values of a
Barker sequence with linearly polarized films.

For the later task, we have indicated that the positive values
of the Barker can be coded with linearly polarized light along
the radial direction. The negative values of the Barker are coded
with linearly polarized light along the angular direction.

As a proof of principle, we have verified experimentally the
following result: for the Barker sequence of length L � 3, after
in-plane rotations of 120°, the polarizing films produce either
crossed-polarization or polarization alignment. Of course,
this polarization coding scheme is not restricted to one
particular case.

We have recognized that despite the fact that the polariza-
tion scheme provides a high light throughput, the ratios be-
tween the maxima and the minima are not as high as the

ratios of the original Barker sequences. However, our polariza-
tion coding can be used with broad band noncoherent sources.

APPENDIX A

If the support has a central obscuration, then instead of using
the Eq. (5) in the main text, we use the following amplitude
transmittance:

P1�ρ;ϕ� �
XL−1
l�0

Bl rect

�
ϕ − l

L 2π
2π
L

��
circ

�
ρ

Ω

�
− circ

�
ρ

εΩ

�

:

(A1)

In Eq. (A1), the Greek letter ε is a dimensionless, real pos-
itive number, such that 0 < ε < 1. This dimensionless number
scales the obscuration ratio in terms of the maximum radius Ω.
In mathematical terms, the inner circle is

circ

�
ρ

εΩ

�
�

�
1 if εΩ ≤ ρ ≤ Ω
0 otherwise

: (A2)

Next, we note that for describing the axial amplitude distri-
bution of the annular support, it is convenient to modify the
change of variables in Eq. (A1). Now, we have that

ζ � 1

1 − ε2

��
ρ

Ω

�
2

− ε2


−
1

2
;

rect�ζ� � circ

�
ρ

Ω

�
− circ

�
ρ

εΩ

�
;

W 2;0 � −

�
λ2Ω2

2

�
z;

q�α;W 2;0� � p�0; θ; z; α�: (A3)

Trivially, for ε � 0, Eq. (A3) reduces to Eq. (A1). By
substituting Eq. (A3) in Eq. (14), and after performing the
integration, we obtain

q�α;W 2;0� � �1 − ε2��πΩ2�

× L
�
1 −

�
1 −

Min
L

�				 L2π α
				



× exp
�
iπ�1� ε2�

�
W 2;0

λ

��

× sinc
�
�1 − ε2�W 2;0

λ

�
: (A4)

Now, the square modulus of the normalized version of the
complex amplitude distribution in Eq. (A4) reads

T �α;W 2;0� � �1 − ε2�2
�
1 −

�
1 −

Min

L

�				 L2π α
				


2

×
�
sinc

�
�1 − ε2�W 2;0

λ

�

2

: (A5)

Equation (A5) is Eq. (A4) in the main text.
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