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ABSTRACT 

Metallo Dielectric Photonic Crystals formed by same periodicity metallic inserts in a Dielectric Photonic Crystal show 
three kind of band gaps, those at the well know dielectric band gap, the ones attributed to the absorption of metal to low 
frequencies and a new class of metallic bandgaps. Numerical studies have confirmed that while the dielectric band gap 
width is basically described by the refraction index contrast, the width of the metallic band is described by the thickness 
of the metal inserts. In this work we carry on the corresponding analytical analysis of both band gaps for this one 
dimensional ternary dielectric-dielectric-metal structure. The stack that we are proposing is a quarter-wave for the 
dielectrics and the thickness of the metallic layers is changed as a free parameter. Using standard transfer matrix 
formalism, we find a closed form of the dispersion relation and from it; we have analytically demonstrated the formation 
and width of the dielectric band gap and its metallic perturbation, as well as those of the additional metallic band gap. 
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1. INTRODUCTION 
Dielectric Photonics Crystals have greatly benefited from the practical experience learned with thin films as the early 
One Dimensional Photonic Crystals. We inherited practical rules of the thumb such as the Refraction Index Contrast 
dependence of the Photonic Band Gap width. Such simple, but useful knowledge for Metallo Dielectric Photonic crystals 
is not available and some preliminary analytical results are described in this article, to corroborate our early numerical 
findings1. Metallic Photonic Crystals (MPC) did not have such clear start because of the metal loss, there are two 
outstanding contributions. The first one by Kuzmiak and Maradudin2, using dispersion relations and perturbation theory, 
they produce approximate solutions for a single metal-single dielectric PC. Well beyond the perturbation regimen, 
thicker metallic inserts, Yablonovitch and co-workers3 studied PC and showed clearly non perturbative features in the 
equivalent dielectric crystal.  

 
Figure 1.  Schematic representation of the MDPC stack. 
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Our earlier works have shown that we are looking at opposite limits of the same problem2-6, we have explored a model 
where both dielectric and metal features can be clearly differentiated, a Metallo Dielectric Photonics Crystal build from a 
basic Dielectric Photonic Crystals as the supporting structure with the metallic inserts keeping the same periodicity, (see 
Fig. 1), conforming a ternary stack dielectric-dielectric-metal Metallo Dielectric Photonic Crystal (MDPC). We have 
demonstrated that these structures show three kinds of band gaps, the first one that shows primarily the dielectric features 
and centered at the Bragg frequencies, and due to the metal component: a band gap at low frequencies and a metallic 
band gap, due primarily to the metal and located between Dielectric band gaps in a PC, this can be appreciated in Fig. 2, 
where stop gaps for the transmittance of the crystals are shown. Here, we are showing transmittance curves instead of 
band diagrams because the “metallic” band gaps are easier appreciated and the transmittance can be calculated faster 
than the band diagrams for high frequencies (a discussion about when this comparison is valid can be consulted in a 
previous work7). However, our calculations will be done on the bases of the dispersion relation and band diagrams 
terminology. Our goal in this work is to describe analytically the localization and thickness of this band gap.  
 

      
 

Figure 2.  Left, stop gaps for a quarter-wave PC. Right, stop gaps for a MDPC. 

 
 

We design the MDPC as follows. The thickness of the dielectrics will be λ/4 for each layer and for the case of the 
metallic inserts the thickness will be changed as a parameter δ. Thus, a period or unit cell of the crystal will be L = a + b 
+ δ, as we can see in Fig. 1.  
 

2. ANALYTICAL RESULTS 
We will start by recapitulating the well known dispersion relation for a 1D PC: 

 ( ) ( ) ( ) ( ) ( )
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where κ is the Bloch wave vector, k1 and k2 are the wave vectors in the respective medium. The band diagram for the Eq. 
(1) is shown in Fig. 3, the axes have dimensionless units. 
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Figure 3.  Band diagram for a quarter-wave stack. 
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In the Brillouin zone boundaries { }Re / ,Lκ π= therefore 

 ,L ixκ π= ±  (2) 

which means that the real part of the cosine function in the left part of Eq. (1) is close to 1 and the imaginary part x 
(absorption) will change in the band gap region, but in the boundaries will be cero. Also, there is a particular frequency 
ωB (the Bragg frequency) that satisfies 

 1 2
1 .
2

k a k b π= =  (3) 

It is located exactly at the middle of the band gap for a quarter-wave stack and because our normalization in the odd 
numbers in “x” axis (see the left graph in Fig. 2 or Fig. 3 at the end of the Brillouin zone). Using conditions (2) and (3) 
in the dispersion relation (1), yields  
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Eq. (4) gives the maximum value for the absorption in the middle of the band gap. 

On the other hand, if we take a small displacement from the central frequency in the band gap ωB, and renormalizing 
as follows  

 B B
1 2 .y n a n b

c c
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= =  (5) 

Again substituting in Eq. (1) the conditions (2) and (5), we arrive to 
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and in the boundaries of the first Brillouin zone x = 0. Thus 
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and the total width of the band gap in our original dimensionless units will be: 

 DgapωΔ ~ 1 2
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The previous procedure was discussed before by Yeh8, and clearly can be extended for our MDPC but that will be 
published elsewhere. 

 
Now, we will discuss the MDPC new features. We are considering the metal layers with a refractive index 

depending on the frequency. This is described trough the Drude model:  

 ( ) ( )
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 (9) 

as usual2, 3, ωp = 1.6 x 1016 rad/s, is the plasma frequency and γ = 0.001 ωp is the damping coefficient. When the metallic 
inserts are considered the dispersion relation is given by 
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Figure 4.  Band diagram, absorption and the transmitance for the MDPC  with metallic layers of thickness δ = 
0.001 µm. 

 
We are aware that the wave vectors of the metal are complex numbers with real (imaginary) part k3R (k3I) and 

therefore the Bloch wave number κR (κI) as well. As we can see from Fig. 2, there is an unexpected additional stop gap 
just between two consecutive dielectric stop gaps. This can also be appreciated in the band structure, Fig. 4 is the plot of 
the MDPC dispersion relation Eq. (10). This means that, in this case the relation (3) should be modified to 

 
1 2

1 3 ,
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k a k b π π π= = + =  (11) 

as long as δ is small. In the same way Eq. (2) should be changed to  

 
2
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and substituting this last relation and Eq. (11) in Eq. (10), yields  
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Separating the last relation into real and imaginary parts, and evaluating them on the boundaries of the first Brillouin 
zone (x = 0), we arrive to  
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From the real parts relation, we find 

 ( ) ( )3
3 2 1    ,
2Rk n nπδ π= + − ∈N  (16) 

where the π/2 solutions were discarded because they correspond to the stop gaps associated to the pure dielectric stack. 
Whereas the imaginary part has the solution 
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which represents the maximum absorption from the metal in the middle of the band gap. 

In analogy with the dielectric calculation, we will proceed to calculate the width of the metallic band gap. If a small 
shift to the low frequencies is considered on the neighborhood of the Bragg frequency for the metallic stop gaps, then 

 1 2 3
3
2Rk a k b k yπδ= = = +  (18) 

and again evaluating in the dispersion relation (10) in the boundaries of the first Brillouin zone, it reduces to 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 2

3 3
1 2

21 2
1 2 3 3 3 3 3 3 32

1 2 3

1 cos sinh cos cosh sin
2

         + sin cos cosh cos sinh sin 0.
2

I I

R I R I I I

n n
y i k y k y

n n

n n n n n in n n in y y k y i k y
n n n

δ δ

δ δ

⎡ ⎤+
− +⎡ ⎤⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦
+ ⎡ ⎤− + + − + =⎡ ⎤⎣ ⎦⎣ ⎦

 (19) 

After some algebraic manipulation, taking only the real pat because the imaginary part is a redundant equation, we arrive 
to 
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Until this point we were working with exacts equations, but we need to make and approximation to find an analytical 
solution for y not so cumbersome. Then, we are taking the expansions of the sine and cosine functions to order cero: 
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which can be immediately solved 
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Finally, the width of the metallic band gap will be 
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The width of the metallic band gap is plotted in Fig. 5.  The lineal relation corroborate our early numerical results 
and show that they are a good approximations to describe for metallic inserts in the perturbative regimen, in our example 
a thickness should be less than δ = 0.01 µm. 

 

 
Figure 5.  Solid line, the widht of the metallic band gap described by Eq. (23). Circles are numerical measurements and 
dashed line is a numerical fit. 

 

3. CONCLUSIONS 
We described analytically the position and width of a new band gap in a ternary one dimensional photonic crystal 
dielectric-dielectric-metal. Our results show that these band gaps are structural band gaps and they are different from the 
band gap formed before the plasma frequency in structures with metal and at the same time not attributed to the 
dielectrics band gaps well-known in 1D quarter-wave dielectric photonic crystals.  
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