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This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called
MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and
exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set
of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on
datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left
ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared
to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results,
MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for
obtaining the optimal control points and attains a high accuracy segmentation.

1. Introduction

Computed tomography (CT) scanning and magnetic res-
onance imaging (MRI) are widely used in medical tests
since they represent a noninvasive and painless modalities
for the diagnosis of cardiac disease. In clinical practice,
the process performed by a cardiologist on medical images
can be subjective, labor intensive, and susceptible to errors
because it is based on a visual examination followed by a
manual delineation of the human organ. Consequently, the
application of computational techniques in order to obtain
a more efficient and accurate image segmentation within an
acceptable time plays an essential role.

In medical image analysis, the automatic segmentation
of human organs is an important and challenging task. In
the literature, several techniques have been reported for
this purpose such as, region growing in pelvic injuries [1],
improved watershed transform for tumors in mammograms
[2], enhanced suppressed fuzzy c-means to work with brain

magnetic resonance images [3], wavelet transform in dermo-
scopic images [4], templates for atlas in radiotherapy [5], and
active contour models (ACMs) in mammographic images
[6, 7].This method was introduced by [8] and it is an energy-
minimizing spline that consists of control points also called
snaxels.This spline evolves through the evaluation of internal
and external forces according to the shape of the object to
be segmented. ACM has been extensively used in medical
applications such as segmentation of human prostate [9],
intravascular ultrasound images [10], breast lesions [11], and
breast tumors [12].

In the traditional implementation of active contour
model there exist two main weaknesses. The first drawback
is the initialization of control points, which must be close
to the object of interest to achieve a favorable segmentation
otherwise failure of convergence will occur. The second
drawback is the propensity to stagnate in local minima
giving an inaccurate convergence to the boundaries of the
object. To solve these disadvantages some improvements
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have been suggested to adapt different methods to work
together with ACM including statistical methods [13, 14],
graph cut [15], population based-methods such as particle
swarm optimization (PSO) working with polar sections [16],
static large searching windows [17] and by adapting the
PSO velocity equation [18], genetic algorithms [19, 20], and
differential evolution [21].The performance of the population
based-methods working together with ACM is very suitable
according to the tests since the active contour becomes more
stable, robust, and efficient in local minima problem.

Differential evolution (DE) is a stochastic and popula-
tion-based optimization method similar to evolutionary
algorithms suggested by [22, 23]. DE has become very popu-
lar for solving global optimization problems with nondiffer-
entiable and nonlinear functions with a fast convergence.The
efficiency and robustness of the DE method directly depend
on the settings of the control parameters such as popula-
tion size, selection method, differentiation factor, and the
crossover probability constant which controls the number of
generated solutions for each individual through generations.
As DE is easy to implement, not computationally expensive
and it is highly efficient solving optimization problems, it
has been used in many real-world applications such as text
summarization [24], design of reconfigurable antenna arrays
[25], job shop scheduling problem [26], blade design of wind
turbines [27], and in the parameter estimation for a human
immunodeficiency virus (HIV) [28].

In this paper, we introduce a novel image segmentation
method based on multiple active contours guided by differ-
ential evolution optimization technique, which divides the
object of interest in polar sections. Each polar section has
a population of individuals represented by control points to
perform its particular search strategy in order to find the
optimal control point (snaxel). Since the proposed method
can appropriately overcome the drawback of initialization
of the traditional ACM and the inaccurate convergence on
the concave boundaries of an object, MACDE also addresses
the problem of segmenting the human heart and the human
left ventricle from datasets of sequential CT and magnetic
resonance images, respectively. Finally, to visualize the seg-
mentation results of CT images a 3D reconstruction approach
of the human heart is presented.

The structure of this work is as follows. In Section 2,
the fundamentals of active contour model and differential
evolution are presented. In Section 3, the proposed MACDE
method is introduced, along with a set of validation metrics
to evaluate its performance. The experimental results are
discussed in Section 4, and from the similarity metrics,
conclusions are presented in Section 5.

2. Background

In this section, the fundamentals of the active contour
model and differential evolution optimization technique are
explained in detail.

2.1. Active Contour Model. Active contour model (ACM),
also known as snake, is a parametric curve, which can move

within the spatial domain of an image where it was assigned.
The snake is defined by 𝑝(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)), 𝑠 ∈ [0, 1],
where 𝑡 represents the time parameter whereby the curve
evolves in order to minimize the total energy function given
by

𝐸snake = ∫

1

0

[𝐸int (𝑝 (𝑠, 𝑡)) + 𝐸ext (𝑝 (𝑠, 𝑡))] d𝑠. (1)

The above-mentioned energy function consists of two com-
ponents: 𝐸int that represents the internal energy and 𝐸ext
the external energy. The internal energy presented in (2)
is composed by the first derivative of 𝑝(𝑠) guided by the
curve tension parameter 𝛼(𝑠) and the second derivate of 𝑝(𝑠)
controlled by the rigidity parameter 𝛽(𝑠). This energy keeps
the search performed by the control points within the spatial
image domain and also it controls the shape modification of
the parametric curve as follows:
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The external energy represented by (3) is given by the
particular features of the search space, where 𝛾 is a weight
parameter and ∇𝐼(𝑝(𝑠)) is the surface gradient computed
at 𝑝(𝑠) achieving the optimal solution by solving the Euler
equation (4), when both external and internal energies
become stable
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In the discrete computational implementation of ACM,
the snake is composed by a number 𝑛 of discrete points
{𝑝
𝑖
| 𝑖 = 1, 2, . . . , 𝑛}. The discrete formulation of internal

and external energies are approximated by (5) and (6), respec-
tively, where 𝑞

𝑖,𝑗
represents the current snake control point

𝑝
𝑖
and 𝑗 the index point within its searching static window.

Accordingly, the local energy function is given by (7), in
which the minimization process is iteratively performed by
using (8), where 𝑊

𝑖
is the predefined searching window for

the control point𝑝
𝑖
and 𝑘
𝑖
is obtained byminimizing the local

energy function [17]:
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There exist two main weaknesses in the traditional imple-
mentation of ACM. Firstly, sensitivity to the initial posi-
tioning of the control points (snaxels) and secondly, the



Computational and Mathematical Methods in Medicine 3

propensity to stagnate in local minima deflecting the snake
of the optimum edge of the object of interest. In order
to overcome the aforementioned drawbacks of the ACM,
a population-based technique such as differential evolution
optimization (DE) has been adopted, which is described in
the following Section 2.2.

2.2. Differential Evolution. Differential evolution (DE) is a
stochastic real-parameter heuristic proposed by [22, 23] for
numerical global optimization problems similar to stan-
dard evolutionary algorithms. DE starts with a set of ran-
domly initialized potential solutions, called individuals 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁𝑝
}, where 𝑁𝑝 is the population size. These

individuals are gradually improved by applying different vari-
ation operators and the solution is chosen to be the individual
with the best fitness according to an objective function.

The fundamental idea behind DE algorithm consists of
three evolutionary principles: mutation, crossover, and selec-
tion on the floating-point encoding. The mutation step
creates a mutant vector 𝑉

𝑖,𝑔+1
at each generation 𝑔 based

on the distribution of the current population {𝑋
𝑖,𝑔

| 𝑖 =

1, 2, . . . , 𝑁𝑝} by performing the classical mutation strategy
presented in

𝑉
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) , 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖, (9)

where 𝑟1, 𝑟2, and 𝑟3 represent the indexes of three individ-
uals mutually different and uniformly selected from the set
{1, . . . , 𝑁𝑝} and the 𝐹 represents the differentiation factor
also known as scaling or mutation factor parameter. After the
mutation process, the crossover operator is applied based on
(10), to create the trial vector 𝑈

𝑖,𝑔+1

𝑈
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= {
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(10)

where 𝑟 is a uniform random value on the interval (0, 1),
which is compared with the CR (crossover rate) parameter. If
𝑟 is bigger thanCR, the current information of individual𝑋

𝑖,𝑔

is conserved, otherwise the values from the mutant vector
𝑉
𝑖,𝑔+1

are copied to the trial vector 𝑈
𝑖,𝑔+1

. Subsequently, the
selection procedure is applied by using (11) to minimization
process. This procedure selects, according to a fitness func-
tion, the better one between the trial vector 𝑈

𝑖,𝑔+1
and the

individual 𝑋
𝑖,𝑔
. The selected vector is used to replace the

current individual in the next generation:
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According to the previous description, the classical DE
algorithm is described by using the following procedure.

(1) Initialize number of generations 𝐺, population size
𝑁𝑝, value of differentiation factor 𝐹, and value of
crossover rate CR.

(2) Initialize each individual 𝑋
𝑖
by generating random

candidate solutions.

(3) For each individual𝑋
𝑖,𝑔
, where 𝑔 = {1, . . . , 𝐺}:

(a) compute 𝑉
𝑖,𝑔+1

by using the mutation step (9);
(b) assign𝑈

𝑖,𝑔+1
according to the crossover operator

(10);
(c) update 𝑋

𝑖,𝑔+1
, if 𝑈

𝑖,𝑔+1
is better than 𝑋

𝑖,𝑔
by

applying the selection step (11).

(4) If stopping criterion is satisfied (e.g., stability or
number of generations), then stop.

3. Proposed Image Segmentation Method

The proposed MACDE method based on differential evolu-
tion and multiple active contours is described in Section 3.1.
In addition, to obtain a quantitative evaluation of the segmen-
tation results obtained from the proposed method, the set of
similarity metrics is explained in Section 3.2.

3.1. Multiple Active Contours Guided by Differential Evolu-
tion (MACDE). Because of the classical ACM weaknesses
discussed above, differential evolution is adopted to solve
the local minima drawback by guiding the convergence of
multiple active contours on a polar coordinate system similar
to [16]. Since DE is directly applied in the segmentation
task performed by MACDE, the advantages of robustness,
low computational time, and efficiency are preserved. The
proposed method presents three main advantages on the
initialization process, whichmust be considered to adapt it to
the shape of the object of interest. Firstly, the initial contours
can be automatically defined in a circular or elliptical shape.
Secondly, the number of snaxels (individuals) can be modi-
fied according to the number of polar sections in which the
object of interest is divided. The third advantage is the origin
or seed point created interactively by the user to generate all
the snaxels automatically on the constrained spatial domain
of the object of interest.This latter advantage allows to use the
proposed method in the segmentation of stacks of sequential
CT and MR images in order to obtain a 3D reconstruction
approach of human organs by just reproducing the origin
point through the set of images along with the predefined
parameters.

The procedure ofMACDE segmentationmethod consists
of three steps and it is illustrated in Figure 1. The prepro-
cessing stage reduces noise from the image by using a 2D
median filter (3 × 3 window size), followed by the Canny
edge detector (𝜎 = 1.3, 𝑇

𝑙
= 10.0, and 𝑇

ℎ
= 30.0) to

detect the boundary between the background and regions of
interest.These parameters have been experimentally tuned to
preserve the real edges in the image, since these can affect the
segmentation result. The final step in this stage is to compute
the Euclidean distance map (EDM) according to [29]. The
EDM is used to perform the minimization process because it
represents a potential surface, where high potential values are
assigned to the image pixels located far from the target object,
and low potential values (ideally zero) to pixels located close
to the object. The initialization procedure on the resulting
distancemap represents the second stage ofMACDE, where a
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Figure 1: Process of the proposed MACDE image segmentation method.

polar coordinate system is generated through an interactively
determined seed point composed by the 𝑥 and 𝑦 coordinates
of the pixel where it was assigned. This coordinate system
divides the target object via 𝜃 = 2𝜋/𝑔, where 𝑔 represents the
degrees of each constrained polar section 𝑆, inwhich one edge
sectional solution must exist. Additionally, the target object

has to be confined by the spatial domain of the 𝑛 predefined
initial contours and assign 𝑛 equidistant control points as
individuals to conform one population 𝑂

𝑖
for each polar

section 𝑆
𝑖
. The third stage of MACDE is the segmentation

process, where for each section 𝑆
𝑖
, the DE strategy is applied

to minimize the corresponding edge sectional solution by
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evaluating the individuals according to the external energy
(fitness function) derived from (6). When the optimization
process for each population is finished, the segmented object
is acquired connecting the best individuals of each polar
section to each other.

The procedure of the proposed MACDE image segmen-
tation method is described as follows.

(1) Compute the preprocessing step (medianfilter, Canny
edge detector, and Euclidean distance map).

(2) Initialize coordinates (𝑥, 𝑦) of the interactive seed
point, degrees 𝑑𝑔, and number of snakes.

(3) Initialize parameters of DE algorithm: number of
generations 𝐺, differentiation factor 𝐹, and crossover
rate CR.

(4) Generate one population for each polar section 𝑆
𝑖

assigning the current snaxels as individuals.
(5) For each population 𝑂

𝑖
, we have the following.

(a) For each individual𝑋
𝑖,𝑔
, where 𝑔 = {1, . . . , 𝐺}:

(i) compute 𝑉
𝑖,𝑔+1

by using the mutation step
(9);

(ii) assign𝑈
𝑖,𝑔+1

according to the crossover op-
erator (10);

(iii) apply restriction of the search space to
ignore improper solutions;

(iv) evaluate 𝑈
𝑖,𝑔+1

in fitness function (6);
(v) update𝑋

𝑖,𝑔+1
, if𝑈
𝑖,𝑔+1

is better than𝑋
𝑖,𝑔

by
applying the selection step (11).

(b) If the stopping criterion is satisfied (e.g., stability
or number of generations), then stop, otherwise
go to step (a).

(6) Stop MACDE method.

3.2. Validation Metrics. To assess the medical image seg-
mentations performed by the proposed method regarding
the classical ACM and the regions outlined by two experts,
Jaccard index, Dice index, and the Haussdorf distance have
been adopted.

The Jaccard index 𝐽(𝐴, 𝐵) and Dice index 𝐷(𝐴, 𝐵) are
similarity measures located in the range [0, 1] used to com-
pare binary variables [2]. These indexes are computed by
using (12) and (13), respectively. In this work, the regions
segmented through computational methods (MACDE and
classical ACM) are represented by 𝐴, and 𝐵 is used to repre-
sent the regions outlined by the experts. In these similarity
measures if regions 𝐴 and 𝐵 are completely superimposed
the obtained result is 1, and 0 when these two regions are
completely different

𝐽 (𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
, (12)

𝐷 (𝐴, 𝐵) =
2 (𝐴 ∩ 𝐵)

𝐴 + 𝐵
. (13)

The Hausdorff distance is a widely used metric for
shape matching in medical image segmentation. This metric
measures the similarity between two superimposed sets by
using (14), where 𝑎 and 𝑏 represent points defined in sets 𝐴
and 𝐵, respectively, and ‖𝑎 − 𝑏‖ is a some underlying distance
(Euclidean distance in our tests)

𝐻(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ . (14)

In Section 4, the segmentation results obtained from
the proposed MACDE method on different synthetic and
medical images are presented and analyzed by the validation
metrics.

4. Experimental Results

In this section, the proposed MACDE method is applied
firstly, on synthetic images with several concavities and noise,
and secondly, to segment the human heart and the human
left ventricle from computed tomography and magnetic
resonance images. The computational implementations are
performed using the gcc compiler version 4.4.5 running on
Debian GNU/Linux 6.0, Intel Core i3 with 2.13 Ghz and 4Gb
of memory.

4.1. Application on Synthetic Images. In Figure 2 an image of
size 160 × 160 pixels containing an artificial star is presented.
The segmentation result obtained by classical ACM imple-
mentation using 42 control points is shown in Figure 2(a).
The ACM parameters are set as 𝛼 = 0.01, 𝛽 = 0.9, and
𝛾 = 0.05 giving an executing time of 0.090 s. In this figure
the ACM implementation cannot overcome the concavity
problem to fit the star boundary, which is solved through
MACDE implementation as shown in Figure 2(b). In this
simulation MACDE parameters are set as 𝐺 = 10, 𝐹 =

0.1, CR = 0.8, 𝑑𝑔 = 15, and number of snakes = 15,
with an executing time of the optimization process of 0.140 s.
The MACDE segmentation result on the Euclidean distance
map is presented in Figure 2(c). This distance map is also
represented as the 3D distance potential surface, in which the
convergence of the optimized control points is illustrated in
Figure 2(d).

Figure 3 introduces an image of size 300 × 300 pixels
consisting of a circle with Gaussian noise (𝜇 = 0, 𝜎 =

0.04). The Euclidean distance map shown in Figure 3(a)
is computed from the original image and illustrates the
local minima problem present in the test image. The result
obtained by classical ACM using 42 control points is shown
in Figure 3(b), where due to the noise it cannot adjust the
circle boundary accurately. The ACM parameters are set as
𝛼 = 0.01, 𝛽 = 0.9, and 𝛾 = 0.05 requiring an executing
time of 0.104 s. On the other hand,MACDEmethod can solve
the local minima problem and locate the circle boundary
accurately as shown in Figure 3(c). The optimized control
points on the distance potential surface are presented in
Figure 3(d) which are acquired with the MACDE parameters
𝐺 = 10, 𝐹 = 0.1, CR = 0.8, 𝑑𝑔 = 15, number of snakes = 15,
and the optimization process is performed with an executing
time of 0.138 s.
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Figure 2: Synthetic star: (a) result of traditional ACM, (b) result of MACDE implementation, (c) result of MACDE on the Euclidean distance
map, and (d) MACDE optimization process on the distance potential surface.
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Figure 3: Noisy circle: (a) Euclidean distance map of the original image, (b) result of traditional ACM, (c) result of MACDE implementation,
and (d) MACDE optimization process on the distance potential surface.
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Figure 4: Synthetic object: (a) Euclidean distance map of the original image, (b) result of traditional ACM, (c) result of MACDE
implementation, and (d) result of MACDE optimization process on the distance potential surface.
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Figure 5: CT image: (a) test image, (b) the human heart outlined by experts, (c) result of traditional ACM, and (d) result of MACDE
implementation.
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Figure 6: Convergence of the human heart segmentation through
DE iterations.

In Figure 4 an image of 150 × 150 pixels containing a
synthetic object is introduced. The Euclidean distance map
derived from the original image is presented in Figure 4(a)
where the concavity problem is clearly evident. The segmen-
tation result obtained by classical ACM using 42 control
points cannot find the concavities of the object as shown
in Figure 4(b). The ACM parameters of this simulation are
set as 𝛼 = 0.01, 𝛽 = 0.9, and 𝛾 = 0.05 requiring
an executing time of 0.101 s. Moreover, MACDE method
can adjust the object boundary overcoming the concavity
problem as illustrated in Figure 4(c) and in the distance
potential surface in Figure 4(d). The MACDE parameters
used in this test are set as 𝐺 = 10, 𝐹 = 0.1, CR = 0.8, 𝑑𝑔 =

15, and number of snakes = 15, achieving the optimization
process in an executing time of 0.142 s.

The use of differential evolution in MACDE method
provides robustness and accuracy in the three synthetic
test images regarding classical ACM. Even though the
computational time of the optimization process performed
by MACDE is competitive with the segmentation process
carried out by the traditional ACM, the proposed method
improves the segmentation results avoiding local minima
and concavity problems. In Section 4.2, MACDE is applied
on cardiac medical images, and the segmentation results are
evaluated through different distance and similarity measures.

4.2. Application on Medical Images. In this section, MACDE
method is used in the segmentation of the human heart and
the human left ventricle from datasets of sequential CT and
MR images, respectively. The CT images have been supplied
by the Mexican Social Security Institute, and the MR images
have been provided by the Auckland MRI Research Group,
University of Auckland.

In Figure 5(a) a 512 × 512 pixels CT image is presented in
order to compare the human heart segmentation obtained by
cardiologists in Figure 5(b), by applying the classical ACM in
Figure 5(c), and by usingMACDEmethod in Figure 5(d).The

ACM parameters are set as 𝛼 = 0.01, 𝛽 = 0.9, and 𝛾 = 0.05,
number of control points = 49, requiring an execution time
of 0.157 s. Moreover, the MACDE segmentation fits the heart
boundary appropriately in contrast to ACM, according to the
manual delineation by experts, using parameters𝐺 = 10, 𝐹 =

0.1, CR = 0.8, 𝑑𝑔 = 13, and number of snakes = 12, achieving
the optimization process in an executing time of 0.212 s.

Figure 6 shows the process of convergence of MACDE
method in the human heart segmentation on a CT image.
This convergence is computed through generations using the
average fitness of the individuals on the distance potential
surface.

In order to introduce the human left ventricle segmenta-
tion task, in Figure 7(a) a low-contrast, 512 × 512 pixels MR
image is shown. Figure 7(b) shows the Euclidean distance
map computed from the test image to get a better approxima-
tion of the search space where the computational techniques
perform the optimization process. Besides, in Figures 7(c)
and 7(d) the manual delineation performed by expert 1 and
expert 2, respectively, are presented. Figure 7(e) illustrates
the segmentation result applying the classical ACM with
parameters set as 𝛼 = 0.01, 𝛽 = 0.9, 𝛾 = 0.05, and number
of control points = 45, involving an execution time of 0.235 s.
Finally, Figure 7(f) presents theMACDE segmentation result,
which fits the left ventricle accurately with parameters set as
𝐺 = 10, 𝐹 = 0.1, CR = 0.8, 𝑑𝑔 = 14, and number of
snakes = 12.The optimization process performed byMACDE
in this test image involved an executing time of 0.295 s, and it
is presented in Figure 8, where the convergence is calculated
through generations using the average fitness of individuals.

The initialization methodology of MACDE allows work
with sequential images easily, since just the seed point
coordinates (𝑥, 𝑦) and the initial parameters are required for
segmenting the whole set of images. This is an advantage
over the classical ACM, because in MACDE only one user
interaction is needed, while in ACM each control point is
generally provided by the user resulting in a laborious task.

In Figure 9 the human heart segmentation results on
a subset of CT images are presented. The whole dataset
consists of 144 CT images of size 512 × 512 pixels from
different patients. Figure 9(a) illustrates the segmentation
results obtained by classical ACM, where the concavity
problem is clearly shown. The ACM parameters are set as
𝛼 = 0.01, 𝛽 = 0.9, 𝛾 = 0.05, and control points =
45, requiring an average executing time of 0.163 s per image.
Figure 9(b) shows the human heart segmentations obtained
with the interactive Tseng method. The parameters of this
simulation were tuned according to [17] as 45 control points,
9 particles for each swarm, and window size 30 × 30
pixels, given an average executing time of 0.176 s per image.
Figure 9(c) presents the segmentation results obtained by
MACDE, which fit to heart boundary in a suitable way. The
MACDE parameters are set as 𝐺 = 10, 𝐹 = 0.1, CR = 0.8,
𝑑𝑔 = 15, and number of snakes = 12, involving an average
execution time of 0.194 s per image. On the other hand,
the average similarity measures listed in Table 1 are used
to assess the regions segmented by computational methods
and manual delineations by experts, which indicates that
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(d) (e) (f)

Figure 7: MR image: (a) test image (b) Euclidean distance map of test image, (c) the human left ventricle outlined by expert 1, (d) the human
left ventricle outlined by expert 2, (e) result of traditional ACM, and (f) result of MACDE implementation.
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Figure 8: Convergence of the human left ventricle segmentation
through DE iterations.

MACDE segmentation method is promising in human heart
segmentation.

In Figure 10 the human left ventricle segmentation results
on a subset of MR images are presented. The whole dataset
is composed by 23 MR images of size 512 × 512 pixels.
Figure 10(a) shows the segmentation results obtained with
classical ACM, where the local minima problem leads to an

inaccurate convergence to left ventricle boundary. The ACM
parameters in these tests are set as 𝛼 = 0.01, 𝛽 = 0.9,
𝛾 = 0.05, and control points = 42, demanding an average
execution time of 0.221 s per image. Figure 10(b) shows the
segmentation results by applying the Tseng method. The
parameters of this simulation were experimentally chosen
as 42 control points, window size as 30 × 30, and 15
particles for each swarm, given an average executing time
of 0.253 s per image. In Figure 10(c) the regions segmented
by MACDE are illustrated. These segmentation results fit
properly to the left ventricle boundary with parameters set
as 𝐺 = 10, 𝐹 = 0.1, CR = 0.8, 𝑑𝑔 = 15, and
number of snakes = 12, requiring an average execution time
of 0.275 s per image. Moreover, to quantify the segmentation
results, Table 2 presents the comparative analysis through
Dice index, Jaccard index, and Haussdorf distance between
computational methods and manual delineations by experts.
This similarity analysis suggests that MACDE is competitive
regarding regions outlined by experts, and it is more accurate
than the classical ACM, and the interactive Tseng method.

Finally, in order to visualize the segmentation results
acquired from sequential CT images, 3D reconstruction
approaches obtained from the experts, classical ACM and
the proposed MACDE method are presented in Figure 11.
The quality of the 3D reconstruction depends on the number
of sequential images, and the approaches presented below
consist of 18 CT images, which are achieved through super-
position of the resulting contours according to the image
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(a)

(b)

(c)

Figure 9: CT images (human heart segmentation): (a) results of traditional ACM, (b) results of Tseng method, and (c) results of MACDE
implementation.

acquisition order. These reconstructions illustrate a signifi-
cant effectiveness and stability ofMACDE in the human heart
segmentation.

5. Conclusion

In this paper, a novel image segmentation method based
on multiple active contours guided by differential evolution
(MACDE) has been proposed. The segmentation method
has introduced some important advantages regarding the
classical active contour model and the interactive Tseng
method, in particular, the partitioning of the region of interest
in polar sections to overcome the local minima problem and
the sensitivity to initial contour position. In order to evaluate

the performance of the proposed method, some experiments
with synthetic images following by experiments with cardiac
medical images acquired from the computed tomography
and magnetic resonance procedures were presented. The
experimental results demonstrated the efficiency and stability
of MACDE in the presence of noise and deep concavities.
These advantages made it possible to attain a high accuracy
in the human heart and human left ventricle segmentations
compared to the regions outlined by experts according to
the evidence showed by the set of similarity metrics. In
addition, the experimental results have also revealed that
MACDE is highly suitable for medical image applications,
including the segmentation of sequential medical images
within a competitive computational time.
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(a)

(b)

(c)

Figure 10: MR images (human left ventricle segmentation): (a) results of classical ACM, (b) results of Tseng method, and (c) results of
MACDE implementation.

Table 1: Average similarity measure with Hausdorff distance,
Jaccard index, and Dice index among the regions segmented by
classical active contour model (ACM), interactive Tseng method,
our proposed method (MACDE), and the regions outlined by two
experts from the set of CT images.

Comparative studies Distance/similarity measure
Hausdorff

(𝐻)
Jaccard index

(𝐽)
Dice index

(𝐷)
ACM versus Expert 1 4.0 0.3548 0.5238
ACM versus Expert 2 3.0 0.5272 0.6904
Tseng versus Expert 1 2.236 0.8260 0.9047
Tseng versus Expert 2 2.8284 0.7872 0.8809
MACDE versus Expert 1 3.0 0.8666 0.9285
MACDE versus Expert 2 1.4142 0.9090 0.9523

Table 2: Average similarity measure with Hausdorff distance, Jac-
card index, andDice index among the regions segmented by classical
active contour (ACM), interactive Tseng method, our proposed
method (MACDE), and the regions outlined by two experts from
the set of MR images.

Comparative studies Distance/similarity measure
Hausdorff

(𝐻)
Jaccard index

(𝐽)
Dice index

(𝐷)
ACM versus Expert 1 5.0 0.3548 0.5238
ACM versus Expert 2 10.4403 0.4237 0.5952
Tseng versus Expert 1 1.0 0.9090 0.9523
Tseng versus Expert 2 3.6055 0.8260 0.9047
MACDE versus Expert 1 1.0 0.8666 0.9285
MACDE versus Expert 2 3.1622 0.9534 0.9761
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Figure 11: 3D reconstruction of human heart from CT images: (a) result obtained from expert 1, (b) result obtained from expert 2, (c) result
with classical ACM, and (d) result of MACDE method.
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